
This paper has been published at the
Passive and Active Measurement Conference 2019 (PAM 2019).

The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-15986-3_19.

© Springer Nature Switzerland AG 2019
D. Choffnes and M. Barcellos (Eds.): PAM 2019, LNCS 11419, pp. 1–18, 2019.

https://doi.org/10.1007/978-3-030-15986-3_19

Web Performance Pitfalls

Theresa Enghardt1, Thomas Zinner1, and Anja Feldmann2

1 TU Berlin
theresa@inet.tu-berlin.de, zinner@inet.tu-berlin.de

2 Max-Planck Institute for Informatics
anja@mpi-inf.mpg.de

Abstract. Web performance is widely studied in terms of load times,
numbers of objects, object sizes, and total page sizes. However, for all
these metrics, there are various definitions, data sources, and measure-
ment tools. These often lead to different results and almost all studies do
not provide sufficient details about the definition of metrics and the data
sources they use. This hinders reproducibility as well as comparability
of the results. This paper revisits the various definitions and quantifies
their impact on performance results. To do so we assess Web metrics
across a large variety of Web pages.
Amazingly, even for such “obvious” metrics as load times, differences can
be huge. For example, for more than 50% of the pages, the load times
vary by more than 19.1% and for 10% by more than 47% depending
on the exact definition of load time. Among the main culprits for such
difference are the in-/exclusion of initial redirects and the choice of data
source, e.g., Resource Timings API or HTTP Archive (HAR) files. Even
“simpler” metrics such as the number of objects per page have a huge
variance. For the Alexa 1000, we observed a difference of more than 67
objects for 10% of the pages with a median of 7 objects. This highlights
the importance of precisely specifying all metrics including how and from
which data source they are computed.

Keywords: Web performance · Measurement.

1 Introduction

Web browsing is one of the most prevalent applications in today’s Internet.
Thus, understanding its performance is critical. Hereby, both metrics as well
as experiments have to realistically reflect possible performance improvements
for actual users. Moreover, they need to be reproducible. However, quantifying
Web performance is challenging due to Web page diversity, heterogeneous devices
types and browsers, choice of metrics, including network-centric, browser-centric,
and user-centric metrics, and the lack of well-established standards. Given this
diversity, it is critical that studies provide sufficient details regarding their choice
of metrics, data sources, and tools, to (a) understand and interpret the results,
(b) to compare results across studies, and (c) to reproduce them independently.

For instance, Page Load Time (PLT) is a common metric used to estimate
user-perceived quality (QoE) and to evaluate mechanisms for improving Web

2 T. Enghardt et al.

0
.0

0
.4

0
.8

10 100 1000 10000 100000

Time [ms]

E
C

D
F

PLT with redirects

PLT without redirects

Fig. 1: Page Load Time (PLT) with and without initial redirects.

browsing. Thus, inaccuracies can lead to skewed results which may even lead to
wrong conclusions. PLT is often defined as “time until onLoad3 event”. A less
considered aspect is the start point of the measurement. PLT may include initial
redirects, e.g., when a browser starts loading http://example.com and is redi-
rected to https://www.example.com—the actual landing page. Such redirects
increase PLT. To highlight that the discrepancies are non-negligible Figure 1
depicts PLTs with and without initial redirects4. According to the most recent
W3C Navigation Timings specification [4] initial redirects should be included
in all browser timings. But, whether redirects actually occur in a page load de-
pends on the web workload, i.e., whether one starts with http://example.com

or https://www.example.com. Moreover, even the end point of the measure-
ment is not always well specified (see the Survey section), nor is it obvious how
to precisely measure it. We are not aware of any prior work that quantifies the
impact of the exact choice of metric on the measurement results.

The main contributions of this paper are as follows. 1.) We survey Web perfor-
mance studies and summarize which measurement tools, methods, and metrics
are used. Amazingly, we find that a third of these studies do not provide precise
definitions of their metrics and/or data sources. However, it allows us to identify
tools which are typically used for evaluating Web performance. 2.) We realize
a test environment that allows us to compare different tools against a baseline
to assess their accuracy. Among our results are that in-/exclusion of initial redi-
rects skews the page load times by up to 47% for 10% of the pages. Moreover,
object sizes differ from the packet trace for more than 60% of objects. This is
critical as metrics derived from object sizes, e.g., Byte Index of loaded objects
over time, differ by more than 50%. 3.) We discuss lessons learned regarding
Web performance measurements and provide guidance on how to increase the
accuracy of measured load times and object sizes5. Most importantly: 1.) HAR
files are the most reliable data source for object counts and sizes. Resource tim-
ings underestimate these metrics, as they do not include objects in embedded
frames, and they often do not provide object sizes for cross-origin objects. 2.)
As redirects may highly influence load times, make a conscious choice whether
to include them.

3 See Figure 2 for an overview and Appendix A for more explanation.
4 For details regarding the methodology and the corresponding dataset see Section 4.
5 Our tools are publicly available at https://github.com/theri/web-measurement-tools

Web Performance Pitfalls 3

onLoad

navigationStart fetchStart loadEventStart (PLT)responseStart (TTFB)

DNS TCP TLS HTTP

...

HTTP

Request Response

DNS

Query Answer

TCP

Handshake

TLS

Handshake

Processing

HTTP 3xx (Redirect)

HTTP

Request Response

DNS

Query Answer

TCP

Handshake

TLS

Handshake

Processing

HTTP 200 (with base page)

 Load

resources: DNS TCP TLS HTTP

DNS TCP TLS HTTP

Fig. 2: Browser events and timings. See Appendix A for more details.

2 Web Metrics and Tools

Typical Web metrics include load times, object sizes, number of objects, and page
sizes. Each of these metrics has various definitions and data sources. Moreover,
there are different tools to measure them which we outline in the following.

2.1 Load Times

The time for loading Web pages strongly correlates with user experience [30]. To
load a Web page, a browser usually loads the base document, parses it, constructs
a Document Object Model (DOM), loads the referenced objects, processes them,
and displays the results. Figure 2 shows a detailed view of this process including
the browser events which are the basis of several commonly used load times
metrics.

Definitions for load times: Typically, Page Load Time (PLT) is defined
as the time until the onLoad event. However, in the eye of the user, the actual
Web page display is often finished earlier, e.g., when the content is first displayed
on the screen. Thus, other timings include domContentLoaded, when all objects
referenced in the base document have been loaded, Time To First Paint (TTFP),
when the first content is rendered, or Above The Fold Time (AFT), when the
part of the page visible on the user’s screen has been fully rendered. Start times
can be the navigationStart, the fetchStart, or when the first DNS request or TCP
connection is opened.

Data sources for load times: Load times based on browser navigation
events are available through the standardized Navigation Timings API [3, 4].
Moreover, Time To First Paint (TTFP) is currently being standardized [7]. Being
standardized implies that these metrics are available for different browsers based
on a “similar” definition. HTTP Archive (HAR) files [8] also include onLoad and
domContentLoaded times. However, AFT is not standardized, and estimating
it requires not only load time data but also object positions within the Web
page [12]. Load times are available through the Resource Timings API from
version 1 [5] onward or from HAR files. Object positions are available by querying
the DOM, e.g., using JavaScript.

Tools: Most popular browsers6 implement Navigation Timings and Resource
Timings. The standardized version of TTFP is not yet supported by all browsers7

6 See http://gs.statcounter.com/browser-market-share/desktop/worldwide
7 Chrome and Opera support it, Firefox is still validating their implementation.

4 T. Enghardt et al.

as of September 2018. AFT is realized via a browser plugin available for Chrome [12].
HAR files can be exported using built-in developer tools.

To automate page loads, both Chrome and Firefox provide remote debugging
interfaces, i.e., the Chrome DevTools Protocol8, and Firefox Marionette9. For
both interfaces, there is a variety of clients to navigate to a page and interact
with it, e.g., to inject JavaScript code to export a timing.

Browser automation frameworks such as Selenium [9] allow more complex
Web page interactions using a standardized webdriver interface, which controls
Firefox using the Marionette protocol. The authors of Selenium advise against
using it for Web performance testing, as its complex setup may incur significant
performance overhead [10]. Furthermore, WebPagetest [11] integrates different
browser automation frameworks into a single platform. It provides a Web-based
User Interface for Navigation Timings, HAR files, load times, and Speed Index.

2.2 Number and Size of Objects

Number and sizes of objects are used to estimate the complexity of Web pages
and are needed to compute metrics such as Object Index or Byte Index.

Possible definition of object count, object size, and derived metrics:
Nowadays, Web pages often fetch objects continuously even after the initial page
load has completed. Therefore, object counts should only include those objects
loaded until the onLoad event. This can be done by either observing HTTP
request-response pairs or by using the objects in the DOM. With regards to object
size, networking-related studies usually use the encoded size, i.e., the number of
bytes transferred over the network. One alternative is the decoded size, namely
the number of bytes after decompression. However, as objects are transferred
over HTTP there is overhead, namely the HTTP headers. Unfortunately, it is
often unclear if the object size includes the header or not. The total page size is
the sum of all object sizes. Byte Index is the integral of sizes of objects loaded
over time, see [2].

Data sources for object sizes: One way to derive the number of objects is
to count the number of HTTP request-response pairs using the list of entries in a
HAR file. The number of objects involved in constructing a page is available via
the Resource Timings API. HAR files [8] as well as Resource Timings version 2 [6]
provide encoded and decoded body size of each object. In addition, HAR files
include HTTP headers, possibly including a Content-Length header, and header
size10, while Resource Timings also includes the transfer sizes of header and
body. An alternative is to extract the number of objects from a packet capture
trace if it is possible to successfully decrypt all elements. However, exact object
sizes can be off due to TLS padding.

8 https://chromedevtools.github.io/devtools-protocol/
9 https://firefox-source-docs.mozilla.org/testing/marionette/marionette

10 Note that for HTTP/2, logged header sizes do not correspond to bytes on the wire
anymore due to HTTP/2 header compression.

Web Performance Pitfalls 5

Table 1: Survey of Web performance studies: Metrics and data sources.

Metrics Definition Data source Used in papers

PLT
Time of onLoad

Navigation Timings 6
HAR file 1
unknown 2

Time to load all objects HAR file 1
unknown unknown 3

DOM Time Time of domContentLoaded Navigation Timings 1

AFT Visible content rendered Resource Timings 2

Object load
times

Time until object responseEnd
Resource Timings 1
HAR file 1

Object size number of bytes transferred
HAR file 2
unknown 2

Number of
objects

HTTP request-responses before onLoad Resource Timings 1
number of DOM resources HAR file 4

3 Survey of Web Studies

Given the variety of metrics definitions, data sources, and tools, we survey Web
performance studies published at SIGCOMM, IMC, PAM, NSDI, and CoNEXT
during the last 8 years. In total, we include 15 papers [12–26], two of which
include links to their code repositories in their papers.

Table 1 summarizes the metrics and data sources of the surveyed papers.
Many of them use PLT, as it is well-known and widely used across academia and
industry, standardized by W3C, and readily available from various data sources.
However, the surveyed papers use diverse definitions and data sources which
surprisingly are often not even specified in the paper. We note that only one of
the surveyed papers even mentions initial redirects. Several papers compare PLT
with other metrics such as AFT, which is more user-centric, but not standardized
and, thus, harder to measure. Finally, several papers in the survey (also) measure
the number, size, and load times of individual objects to compute integral metrics
to quantify the page load process. Such metrics are readily available from the
data sources. But many papers fail to precisely specify how they measure or
compute these metrics.

Tools used to fetch pages: Table 2 summarizes which browsers and au-
tomation tools are used in the surveyed papers. Chrome is most popular, with
Firefox in second place. Most studies use the DevTools interface but some use
Selenium. To highlight the need for more information we point out that one
paper uses a dataset and testbed without stating either the browser or the tools
used. Overall, we conclude that a variety of different tools are used, with yet
unclear effects on the results.

4 Methodology

So far we have pointed out that many different Web performance studies used
different metrics. In this section, we explain our setup to understand the impact
of different metrics. To compare the impact of different frameworks11 and dif-

11 Our scripts instrument browser automation frameworks directly to give us more
control and avoid the overhead of an integrated framework such as WebPagetest.

6 T. Enghardt et al.

Table 2: Survey of Web performance studies: Browsers and automation tools.

Browser Automation tool Used in papers

Chrome (desktop)
DevTools 6
Selenium 1
unknown 1

Chrome (mobile) adb shell 1

Firefox (desktop)
Selenium 1
unknown 2

phantomJS - 1

ferent Web pages we use the following tools12: 1.) Firefox 61.0.2 with Selenium
3.14.0 and geckodriver 0.21.0, 2.) Firefox 61.0.2 with Marionette, and 3.) Chrome
69 with Chrome DevTools.

We load pages from a Thinkpad L450 with Debian Stretch. To avoid band-
width issues, our vantage point is directly connected to a university network.
To minimize the effects of DNS caching and delay to the resolver, we use a re-
cursive resolver close13 to our vantage point instead of popular open resolvers.
Since the most commonly used workload are the Alexa Top Lists despite their
limitations [28] we also use a snapshot of the global Alexa Top 100014, and the
Alexa 10001 to 11000 for Marionette and ChromeDevTools. We then repeatedly
accessed each page 10 times with the different frameworks. This ensures that all
experiments for a single page are done within a reasonable time window. Overall,
the experiments were executed between 18. September and 11. October 2018.

For each page, we first initialize a new browser profile with a cold browser
cache. We then fetch the page and wait for it to load15. As data sources, we
export Navigation Timings, Resource Timings, TTFP, and the HAR file using
the native HAR export of the browser via har-export-trigger 0.6.1. In parallel,
we also run a packet capture to derive our baseline. If one of the data sources
does not yield any data, we log an error and exclude the page load attempt from
the data set.

5 Results

In this section, we point out various pitfalls with Web performance metrics.

5.1 Pitfall: Redirects

As already pointed out, see Figure 1, initial redirects can increase PLT substan-
tially, especially for short page loads. Timings excluding redirects may be more
representative of page loads by actual users due to browser optimizations, e.g.,
the user types the first few letters and then clicks on a URL suggested by the

12 For realistic browser behavior, which includes the rendering engine, we open Web
browsers including the graphical user interface rather than using them in headless
mode.

13 Close in terms of network distance.
14 18. September 2018 for Alexa 1000 and 30. September 2018 for Alexa 10001-11000.
15 We instruct the browser automation tool to wait for the onLoad event.

Web Performance Pitfalls 7

0 20 40 60 80 100

0
.0

0
.4

0
.8

Redirect Time / Load Time [%]

E
C

D
F

PLT

domContentLoaded

TTFP

TTFB

(a) Nav. Timings: Redirect share of load time

HTTP 301 or 302 before first 200

F
re

q
u
e
n
c
y
 i
n
 d

a
ta

 s
e
t

0

100

200

300

400

0 1 2 3 4 5 6 7 8

Alexa 1000

Alexa 10001−11000

(b) HAR: Number of redirects

Fig. 3: Effects of initial redirects.

browser, or the browser automatically uses HTTPS due to HSTS or adds “www”
to domain names the user types16. In contrast, load times including redirects are
representative of page loads if a user types in the full URL and presses Enter.
However, a conscious choice should be made and the web workload adjusted
accordingly.

To assess the impact of redirects we first count the number of server-side
redirects 17 for both the Alexa 1000 and 10000-11000, see Figure 3b. The most
common cause for a redirect is that a page is no longer available via HTTP
and the browser is redirected to the HTTPS version. Given that many pages
have migrated to HTTPS, e.g., 75% of Web pages loaded by Firefox users in
September 2018 [29], this is not surprising. Other reasons for redirects include
pointers to subdomains, e.g., for localized versions of the content based on the
geolocation. Often both occur and lead to two redirects.

Next, we revisit page load times18.To quantify their contribution to the load
time, we show, in Figure 3a, the relative percentage of load times of redirects for
all Web pages. Redirects account for 6.1% of PLT for 50% of the pages and for
23% of PLT for 10% of pages. This implies that the PLT with or without redirects
differs by this amount. The difference is even larger for user-centric load time
metrics as these are usually shorter. For instance, Time To First Paint (TTFP)
differs by 19.1% for 50% of pages and by 47% for 10% of pages. Indeed, the time
for the redirects is about the same as the Time To First Byte after the redirect
for about 50% of pages. The reason is that most redirects, typically involve an
additional name resolution, TCP connection establishment, TLS handshake19,
and HTTP request.

In summary, we make the following observations: 1.) Redirects account for
a significant share of PLT and a substantial share of user-centric load time
metrics such as TTFP. 2.) Studies should make a conscious choice on in-/exclude
redirects, see Section 6.

16 See, e.g., https://support.mozilla.org/en-US/kb/search-web-address-bar.
17 Server-side redirects use HTTP status 301 or 302. Client-side redirects use status

200 and contain the redirection URL in the response content, which we do not log.
18 For Navigation Timings, redirects are the time between navigationStart and fetch-

Start. For HAR files, we use the time before the first HTTP 200 response.
19 In September and early October 2018, TLS 1.3 was still not deployed.

8 T. Enghardt et al.

Table 3: Object sizes: Accuracies for unencrypted objects.

Comparison Browser Match Counted too many bytes Counted too few bytes
Cases [%] Cases [%] 99%q [KB] Max [KB] Cases [%] 99%q [KB] Max [KB]

Content-
Length

Firefox 100 0 0 0 0 0 6.8
Chrome 100 0 0 0 0 0 0

HAR body
size

Firefox 21 72.6 13.4 66.28 2170 14 0.13 852.4
Chrome 91.9 0.5 0 303.4 7.6 0.3 2925

Res body size Firefox 39.6 0.8 0 2910 59.6 196.6 5092
Chrome 46 0.5 0 276.5 53.5 181.5 5092

5.2 Pitfall: Object Sizes

Next, we take a closer look at object sizes. In particular, we explore if different
data sources are consistent with the baseline from the packet capture trace and
if they yield similar results.

Comparison with the baseline for unencrypted objects: To validate
the object sizes recorded by the different data sources, see Section 2.2, we com-
pare them against the baseline which we get via the packet capture trace. This,
unfortunately, is only possible for objects loaded over unencrypted HTTP/1.0
or HTTP/1.1. If TLS is used object sizes may be incorrect due to padding. For
computing the baseline, we extract HTTP request and response pairs from the
packet capture trace and exclude objects with missing bytes. For the remaining
object, we separate the TCP payload into the HTTP header and body, and count
bytes20.Finally, we match the object to the corresponding HAR and Resource
Timing (Res) data based on timestamp. Hereby, we exclude ambiguous cases,
i.e., where multiple HAR entries match an object from the trace.

The resulting comparison is summarized in Table 3 If the Content-Length
header is present its information is mostly consistent with the traces. None of
the other data sources is that good. Rather, we find that the accuracy varies
widely across data sources and browsers. When manually investigating the most
significant mismatches, we find that Resource Timings set object size to 0 for
most cross-origin objects22.In HAR files, body size is often set to -1 if the browser
did not succeed in loading a resource. In several cases, Firefox counted too many
bytes if redirects happened. Apparently, it is returning the size of the redirect
destination instead of the actual object size.

Comparison of data sources for all objects Next, we explore the con-
sistency of the results for all objects including those that are transferred over an
encrypted connection. Figure 4, shows the object size differences for the same
object and various data source combinations, i.e., HAR file body size (HAR),
Content-Length header taken from HAR file, and Resource Timings encoded
body size (Res). Since Content-Length is a close approximation to the baseline

20 See analysis script eval/validate object sizes.py in our repository.
21 In HAR files, Firefox logs body size including headers, contradicting [8],

see https://dxr.mozilla.org/mozilla-central/source/devtools/server/actors/network-
monitor/network-response-listener.js#428, accessed 28.09.2018. Thus, we subtract
header size from all object sizes.

22 Unless the ’Timing-Allow-Origin’ header is set, see [6].

Web Performance Pitfalls 9

0
.0

0
.4

0
.8

10 100 10000 1000000

Absolute Difference [Bytes]

E
C

D
F

HAR − Content−Length

Res − Content−Length

Res − HAR

(a) Firefox

0
.0

0
.4

0
.8

10 100 10000 1000000

Absolute Difference [Bytes]

E
C

D
F

HAR − Content−Length

Res − Content−Length

Res − HAR

(b) Chrome

Fig. 4: Object sizes: Differences due to metric for all objects.

for unencrypted objects we use it as a baseline. Res provides the exact same
object size as Content-Length in only 42.5% of cases for Firefox and in 43.4%
of cases for Chrome. This is consistent with the results for unencrypted ob-
jects, see Table 3. For HAR, Firefox provides an object size which matches the
Content-Length for 91.3% of cases, see Figure 4a. Thus, we conclude that HAR’s
accuracy is better than for unencrypted objects. In contrast, Chrome provides
an object size which matches the Content-Length in only 39.4% of cases for all
objects. When investigating the difference, we find that Chrome sets HAR body
and header size to -1 for all HTTP/2 objects23.

From this, we conclude: 1.) Content-Length provides the most accurate object
size but is not always available. 2.) Resource Timings are an unreliable data
source for object sizes, as they do not provide sizes for cross-origin objects,
except when explicitly allowed. 3.) HAR body size is inaccurate for a significant
number of objects, due to bugs in both Firefox and Chrome (whereby Firefox is
more accurate than Chrome).

5.3 Pitfall: Object Count and ByteIndex

0 20 40 60 80 100

0
.0

0
.4

0
.8

Relative Byte Index Difference [%]

E
C

D
F

HAR − Content−Length

Res − Content−Length

Res − HAR

(a) Firefox

0 20 40 60 80 100

0
.0

0
.4

0
.8

Relative Byte Index Difference [%]

E
C

D
F

HAR − Content−Length

Res − Content−Length

Res − HAR

(b) Chrome

Fig. 5: Byte Index: Difference due to data source.

Amazingly, we find that not only the object sizes differ by data sources but
also the object counts (for the same page download)! For the Alexa 1000 dataset,

23 In Firefox, only HTTP/2 Server Push objects lack body size and timings.

10 T. Enghardt et al.

Table 4: Missing data source: Successful page loads vs. errors for Alexa 1000 run

Tools Success before
onLoad

No data No Res No
HAR

No Res
and HAR

Min Max Median Min Max Median Median Median

Firefox with Selenium 880 898 0 60 76 35 4 3
Firefox with Marionette 915 922 0 37 43 38 3 2
Chrome with DevTools 740 801 100 32 81 14.5 31.5 21.5

object counts from HAR and Res always differ by at least one object and by 7
or more objects for 50% of cases. For 10% of the cases, they are off by more than
67 objects. Numbers for Alexa 10000 are similar. Among the main contributor
to this difference is that Resource Timings do not include objects loaded within
commonly embedded HTML Inline Frames (iframes)24. Rather, these objects
are recorded in the Resource Timeline for the iframe.

Next, we quantify the impact of object size and count differences on the
Byte Index [2], which captures page load progress, i.e., loaded bytes over time.
In Figure 5, we plot the relative difference between Byte Index for the same
page load, calculated from HAR body sizes, Resource Timings body sizes, and
Content-Length header (using the HAR body size if the Content-Length header
is missing). For Firefox, see Figure 5a, the Byte Index is almost identical for
Content-Length and HAR body size, but differs by 17.1% for Res in 50% of
the pages loads, and by 56.4% for 10%. For Chrome, see Figure 5b, the Byte
Index derived from both Res and HAR differs substantially from the Byte Index
derived from Content-Length.

Thus, we conclude: 1.) Resource Timings do not include all objects of a Web
page download. 2.) Byte Indexes from Resource Timings vs. HAR files differ by
13.8%/17% in median and by more than 50% for 10% of the pages.

5.4 Pitfall: Data Source Availability

Besides being inaccurate some data sources do not even provide us with any
data for some Web page access. More precisely, Table 4 shows the number of
successful page loads as well as the errors for the Alexa 1000 for different browsers
and automation tools. Firefox with Marionette yields the best results in terms
of successful runs that include all data elements. Using Chrome often yields
invalid timings, in particular, for the onLoad event. The main culprit is a too
early export of the data—the page load has not yet been completed even though
Chrome was instructed to wait for the onLoad event25. For a non-negligible
number of Web pages, we did not get any results for all or for some of the 10
repeated page loads per browser framework. For most of these page downloads,
the browser never invoked the onLoad event, see also Section 2.1, and, thus,
timed out without exporting any data. Using a different tool would not fix the
problem in some cases: Investigating both the error messages logged by the
browser automation tool as well as the captured traces we find that common
reasons are no DNS response, not being able to establish a TCP connection,

24 See the examples in Section 4.2 of [6].
25 Using the Page.frameStoppedLoading event instead did not resolve this problem.

Web Performance Pitfalls 11

or certificate errors. We limit intermittent connectivity issues by spreading out
page loads over time. But, we cannot rule out filtering, e.g., due to our vantage
point. Still, manual tests for some of the page loads showed that these also fail for
different vantage points. These even involve domains of large application service
providers and content distribution networks, which are hosting resources only
under subdomains26.

In summary, our conclusions are: 1.) Not all domains in the Alexa Top Lists
point to actual Web pages. 2.) Firefox with Marionette is more likely to provide
complete data than Firefox with Selenium or Chrome.

6 Guidelines for Web Performance Measurement

Next, we derive some guidelines for designing and conducting experiments.
Use HAR files and Navigation Timings, not Resource Timings: As

shown in Section 5.2, Resource timings are an unreliable data source, as they
do not include resources of embedded frames and often do not provide sizes for
cross-origin objects.

Choose whether to exclude redirects: Redirects significantly contribute
to page load times. Yet, they may not be representative for typical end-user Web
browsing, recall Section 5.1. It is possible to exclude redirects upfront, e.g., by
adjusting the hit list to post-redirect URLs. However, post-redirect URLs may
change, e.g., due to geolocation or HTTPS migration. Such changes may lead to
more page load failures, compared to starting from the “base” URLs of http://
and the top-level domain name. Alternatively, redirects can be excluded in retro-
spect by computing the timings relative to fetchStart instead of navigationStart
for Navigation Timings resp. relative to the start time of the first HTTP 200
object for HAR files.

Choice of tools: Make a conscious choice whether to use a framework that
integrates browser automation tools, such as WebPagetest [11], or write your own
scripts. The first has the advantage that it enables comparing multiple browsers
out of the box, while the latter gives more explicit control over details. Note,
WebPagetest provides Navigation Timings and HAR files. So pitfalls related to
Resource Timings do not apply. Moreover, it provides additional metrics such
as SpeedIndex. WebPagetest always includes redirects—in line with the W3C
definition of load times.

Use up-to-date software: Major Web browsers are updated rather often,
typically every 1-2 months. While research projects typically last longer one has
to address the trade-off of updating to a newer version during the study: On the
one hand, software updates may fix bugs and provide performance optimizations
so that the results are more representative of state-of-the-art setups and actual
user experience. On the other hand, updating may cause compatibility issues,
e.g., with measurement tools that are updated less often and hinder backward
compatibility. We recommend to consciously address this trade-off and to include
the version numbers of the used tools. See Appendix B for more details.

26 Examples include microsoftonline.com and googleusercontent.com.

12 T. Enghardt et al.

Disable features for a quiet browser: Modern browsers do not just load
the requested Web page. Rather they often automatically load additional data,
e.g., software updates or blocklists, or transmit performance statistics to the
browser vendor. This can cause significant performance overhead. We, thus, rec-
ommend turning off such features. See Appendix B for more details.

Record and compare different data sources: Whenever possible multi-
ple data sources should be recorded to enable cross-checks. Data sources include
but are not limited to Navigation Timings, Resource Timings, and HAR files.
Combining them helps improve accuracy. When choosing metrics it is essential
to understand their status with regards to standardization, e.g., published as
W3C Recommendation, and to which extent the implementation conforms to
the standard.

Mind new protocols: Deployment of new protocols always has the chance
of invalidating existing assumptions about traffic both in general as well as for
Web traffic. Moreover, new protocols may require updates to the measurement
and evaluation setup or trigger so far unknown bugs in the evaluation. Recent
examples include the increased deployment of HTTP/2 and QUIC which use
features such as header compression and HTTP/2 Server Push.

7 Conclusion

We show that Web metrics highly depend on which specific metrics, data sources,
and/or measurement tools are used. For example, initial redirects can cause Page
Load Times (PLTs) to vary by 6.1% in median and by more than 23% for 10% of
pages. The impact is even larger for user-centric metrics such as Time To First
Paint (TTFP), with 19.1% and 47%, respectively. Furthermore, HAR files and
Resource Timings provide widely differing object sizes and numbers of objects
which in turn bias derived metrics, e.g., Byte Index varies by 17.1% for 50% of
pages and by 54.2% for 10% of pages. However, in almost all Web measurement
studies none of the metrics or the data sources are described in sufficient detail.
Moreover, they often ignore the bias of the above differences.

Thus, our study clearly highlights the need to (a) improve documentation,
(b) choose metrics consciously and with all caveats in mind, (c) double check the
results against alternative metrics, and (d) enable qualitative comparisons. To
enable this we strongly follow the recommendations of a recent Dagstuhl seminar
on reproducibility and suggest that conferences and journals should not count
the pages needed to document the precise measurement/simulation setup and
the used metrics against the available page limit.

Acknowledgements

Thanks to Dominik Strohmeier for the discussion and the pointers to resources,
to our shepherd Jelena Mirkovic, as well as our anonymous reviewers.

Web Performance Pitfalls 13

References

1. Paxson, V.: ”Strategies for sound internet measurement. In: Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, pp. 263–271. ACM, New
York (2004)

2. Bocchi, E., De Cicco, L., and Rossi, D.: Measuring the Quality of Experience of
Web users. In: ACM SIGCOMM Computer Communication Review, 46(4), 8-13.
ACM, New York (2016)

3. W3C Recommendation: Navigation Timing, https://www.w3.org/TR/navigation-
timing/. Version 17 December 2012. Last accessed 29 August 2018

4. W3C Working Draft: Navigation Timing Level 2,
https://www.w3.org/TR/2018/WD-navigation-timing-2-20181130/. Version 30
November 2018. Last accessed 17 December 2018

5. W3C Candidate Recommendation: Resource Timing Level 1,
https://www.w3.org/TR/resource-timing-1/. Version 30 March 2017. Last ac-
cessed 29 August 2018

6. W3C Working Draft: Resource Timing Level 2, https://www.w3.org/TR/resource-
timing-2/. Version 11 October 2018. Last accessed 13 October 2018

7. W3C First Public Working Draft: Paint Timing 1, https://www.w3.org/TR/paint-
timing/. Version 07 September 2017. Last accessed 10 October 2018

8. W3C Editor’s Draft: HTTP Archive (HAR) format, https://w3c.github.io/web-
performance/specs/HAR/Overview.html. Version 14 August 2012. Last accessed
29 August 2018

9. Bruns, A., Kornstadt, A., and Wichmann, D: ”Web application tests with selenium.”
In: IEEE software 26.5 (2009)

10. Selenium Documentation: Worst Practices,
https://seleniumhq.github.io/docs/worst.html. Last accessed 29 August 2018

11. Meenan, P.: Webpagetest. https://www.webpagetest.org. Last accessed 17 Decem-
ber 2018

12. Alemnew, A., Christophides, V., Teixeira, R. and Rossi, D.: Narrowing the gap
between QoS metrics and Web QoE using Above-the-fold metrics. In: PAM 2018-
International Conference on Passive and Active Measurement (pp. 1-12). Springer
(2018)

13. Ludin, S.: Measuring What is Not Ours: A Tale of 3rd Party Performance. In:
PAM 2017-International Conference on Passive and Active Measurement (p. 142).
Springer (2017)

14. Erman, J., Gopalakrishnan, V., Jana, R., and Ramakrishnan, K. K.: Towards a
spdyier mobile web?. In: IEEE/ACM Transactions on Networking, 23(6). ACM,
New York (2015)

15. Qian, F., Gopalakrishnan, V., Halepovic, E., Sen, S., and Spatscheck, O.: TM
3: flexible transport-layer multi-pipe multiplexing middlebox without head-of-line
blocking. In: Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies (p. 3). ACM, New York (2015)

16. Wang, X. S., Krishnamurthy, A., and Wetherall, D.: Speeding up Web Page Loads
with Shandian. In: Proceedings of the 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16) (pp. 109-122). USENIX association
(2016)

17. Wang, X. S., Balasubramanian, A., Krishnamurthy, A., and Wetherall, D.: Demys-
tifying Page Load Performance with WProf. In NSDI 2013 (pp. 473-485).

14 T. Enghardt et al.

18. Butkiewicz, M., Madhyastha, H. V., and Sekar, V.: Understanding website com-
plexity: measurements, metrics, and implications. In: Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference (pp. 313-328). ACM,
New York (2011)

19. Kelton, C., Ryoo, J., Balasubramanian, A., and Das, S. R.: Improving User Per-
ceived Page Load Times Using Gaze. In: Proceedings of the 14th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 17) (pp. 545-559)
USENIX Association. (2017)

20. Varvello, M., Schomp, K., Naylor, D., Blackburn, J., Finamore, A., and Papagian-
naki, K.: Is the web http/2 yet?. In: International Conference on Passive and Active
Network Measurement (pp. 218-232). Springer, Cham.

21. Netravali, R., and Mickens, J.: Prophecy: Accelerating mobile page loads using
final-state write logs. In: Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), USENIX Association. (2018)

22. Netravali, R., Nathan, V., Mickens, J., and Balakrishnan, H.: Vesper: Measuring
Time-to-Interactivity for Web Pages. In: Proceedings of the 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18), USENIX
Association. (2018)

23. Netravali, R., Goyal, A., Mickens, J., and Balakrishnan, H.: Polaris: Faster
Page Loads Using Fine-grained Dependency Tracking. In: Proceedings of the 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 16),
USENIX Association. (2016)

24. Zaki, Y., Chen, J., Ptsch, T., Ahmad, T., and Subramanian, L.: Dissecting web
latency in ghana. In: Proceedings of the 2014 Conference on Internet Measurement
Conference (pp. 241-248). ACM, New York (2014)

25. Han, B., Qian, F., Hao, S., and Ji, L.: An anatomy of mobile web performance
over multipath TCP. In: Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies (p. 5). ACM, New York (2015)

26. Naylor, D., Finamore, A., Leontiadis, I., Grunenberger, Y., Mellia, M., Munaf, M.,
... and Steenkiste, P: The cost of the S in HTTPS. In: Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies
(pp. 133-140). ACM, New York (2014)

27. Google Web Fundamentals: User-centric Performance Metrics
https://developers.google.com/web/fundamentals/performance/user-centric-
performance-metrics. Last accessed 05 September 2018

28. Scheitle, Q., Hohlfeld, O., Gamba, J., Jelten, J., Zimmermann, T., D. Strowes, S.,
and Vallina-Rodriguez, N.: A Long Way to the Top: Significance, Structure, and
Stability of Internet Top Lists. In: Internet Measurement Conference 2018. ACM,
New York (2018)

29. Letsencrypt: Percentage of Web Pages Loaded by Firefox Using HTTPS
https://letsencrypt.org/stats/#percent-pageloads. Last accessed 30 September
2018.

30. Egger, S., Hossfeld, T., Schatz, R., and Fiedler, M.: Waiting times in quality of
experience for web based services. In Quality of Multimedia Experience (QoMEX),
2012 Fourth International Workshop on (pp. 86-96). IEEE. (2012)

31. Barth, A.: The web origin concept. RFC 6454 (2011)

Web Performance Pitfalls 15

A A Web Page Load Explained

In this section, we explain a Web page load in more detail. See also Figure 2 and
the processing models in the Navigation Timings specifications [3, 4].

The starting point for a new page load, also called navigation, of a particular
URL, is called navigationStart in [3]. Initially, fetchStart is set to the same value,
but if a redirect occurs, fetchStart is overwritten before the new URL is loaded.

If another page has been previously loaded by the browser, e.g., in the same
browser tab, this document has to be first unloaded. Then, the browser checks
its cache to see whether the page is already there. If the page is not in the cache,
the browser usually resolves the hostname (resulting in a DNS query and usually
answer), establishes a TCP connection, and performs a TLS handshake if the
scheme of the URL is https. Then, the browser issues an HTTP GET request
for the URL. As soon as it receives an HTTP reply, which always contains a
status line, headers, and body, the browser processes the reply.

If the reply contains an HTTP status code of 3xx, such as “301 Moved
Permanently” or “302 Found”, this means that the server redirects the browser to
a different URL, which is given in the “Location” header in the HTTP response.
This redirect may be a same-origin redirect, which roughly means that both the
old and the new URL have the same scheme (http or https), hostname, and port
(see RFC 6454 [31] for details), or it may be a cross-origin redirect. For same-
origin redirects, the start and end time of the redirect are recorded as Navigation
Timings redirectStart and redirectEnd [3], while for cross-origin redirects they
are not. Unfortunately, nearly all redirects we observed are cross-origin, as the
purpose of the redirect is to use a different scheme (HTTPS instead of HTTP) or
hostname (www.example.com instead of example.com). The same-origin policy
is an important security and privacy feature in the Web, so information access
is often restricted to, e.g., the same hostname.

Given the new URL to be fetched, the browser records the current time as
fetchStart, potentially overwriting the old value27. It then checks its application
cache again, resolves the host name if needed, establishes a new TCP connection,
performs a new TLS handshake, and sends an HTTP request for the new URL.
If it gets an HTTP reply, this may be another redirect, an error code such as
“404 Not Found” or “503 Internal Server Error”, or the request may succeed
with a “200 OK”. In the latter case, the body of the HTTP response usually
contains the base document of the Web page in HyperText Markup Language
(HTML). As soon as the browser starts receiving this document, it parses it
and starts constructing the Document Object Model (DOM) of the page. For
example, the document may reference additional resources, such as JavaScript,
Cascading Stylesheets (CSS), or images. Typically, for each of these additional
resources, the browser has to issue a new HTTP request, unless the resource

27 After a redirect, the browser overwrites the old fetchStart value before it fetches
the new URL using a GET request. This implies that once the page load is finished,
fetchStart is the start time of the loading of the final base page, as all previous values
related to redirects are overwritten.

16 T. Enghardt et al.

is proactively sent by the server using HTTP/2 Server Push. Each new HTTP
request may involve an additional name resolution, TCP handshake, and TLS
handshake, because resources are often hosted on different servers than the base
page. The browser now simultaneously fetches new resources, continues to parse
the HTML base page, and processes the CSS and Javascripts, even though these
processes may block each other. See Wang et. al [17] for a detailed explanation
of this complex process.

At some point, the browser flushes the current state of the DOM to the
rendering engine. The time at which this happens corresponds to Time To First
Paint (TTFP). The point at which all resources in the DOM have been loaded
is called DOMContentLoaded and recorded in the Navigation Timings and HAR
file. However, processing of the page usually continues, until, eventually, the
browser fires the onLoad event for the page which is recorded in the Navigation
Timings and HAR file. The onLoad Time is usually taken as Page Load Time
(PLT). At this point, the page load is considered finished. However, onLoad
usually triggers the execution of one or more javascripts, which may result in
loading more resources, sending data, e.g., to third parties, or other network
traffic. In fact, most modern Web pages load resources continuously long after the
onLoad event. Thus, Related Work usually stops counting objects after onLoad.

B Details of Lessons Learned

Next, we outline additional details regarding our lessons learned, which led to
our guidelines for Web performance measurement, recall Section 6.

Software versions: The Debian Linux distribution includes a version of the
Firefox browser which is usually quite dated. This can have a major impact on
load times. For instance, in Firefox version 61 (“Firefox Quantum”), parts of the
code have been rewritten and optimized, which makes the browser much faster
than previous versions. Consequently, carrying out Web page loads using an
older version results in unrealistically long load times. However, updating Firefox
frequently to the newest version can result in incompatibilities with measurement
tools. For instance, not every version of the HAR Export Trigger extension works
with every version of Firefox, so it has to be updated along with the browser.
However, the upside is that in newer versions of Firefox, HAR Export Trigger is
supposed to work without having the developer panel open.

Browser traffic unrelated to page loads: Modern browsers usually is-
sue a significant number of requests that are not directly related to the page
load that a user has requested. For instance, Firefox by default loads block-
lists for “safe browsing”, to protect users from malware or phishing. It also
automatically checks for updates and may even automatically download and
install these updates for the entire browser or for individual browser exten-
sions. These queries can involve substantial data transfers: For example, we
observed the automatic download of a binary related to an H264 media com-
ponent which we never activated or requested: 500 KB were downloaded in
the background. Worse yet, the state of such updates is often stored in the

Web Performance Pitfalls 17

browser profile. This may cause such downloads to be triggered for every fresh
browser profile, i.e., each of our page loads. Additionally, the Chrome browser
by default issues queries to various Google servers, e.g., it tries to connect each
browsing session to a Google account. We provide configurations for Firefox and
Chrome to turn off most features that generate such traffic, see our repository
https://github.com/theri/web-measurement-tools.

Logging a trace and client-side SSL keys To be able to better debug and
validate measurement setups and tools, we recommend capturing packet traces
that include at least ports 53 (DNS), 80 (HTTP), and 443 (HTTPS). Encrypted
traffic can be decrypted after logging the SSL session keys within the browser:
Firefox and Chrome log keys into a specified SSLKEYLOGFILE. Note that this
option must be compiled into Firefox. It, e.g., does not work with the Firefox
binary in the Debian repositories.

C Artifacts Related to This Paper

The following artifacts are available:
Our tools, such as measurement and evaluation scripts: See

https://github.com/theri/web-measurement-tools. This repository includes the
scripts to automatically load Web pages using Firefox with Selenium and Mari-
onette, and using Chrome with DevTools. Furthermore, it includes the analysis
scripts we used to generate our plots.

Data set of Web page loads: See http://dx.doi.org/10.14279/depositonce-
8100. This dataset includes data from all of our experiment runs, see Section 4.
It can be used along with our evaluation scripts to reproduce the plots in this
paper, see https://github.com/theri/web-measurement-tools for details.

