
Technische Universität Berlin

Informed Access Network Selection to
Improve Application Performance

vorgelegt von
M.Sc.

Theresa Enghardt

an der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Georgios Smaragdakis, Ph. D., TU Berlin
Gutachterin: Prof. Anja Feldmann, Ph. D., Max Planck Institute for Informatics
Gutachter: Prof. Dr. habil. Thomas Zinner, TU Berlin
Gutachter: Prof. Dr.-Ing. Jörg Ott, TU Munich

Tag der wissenschaftlichen Aussprache: 05. November 2019

Berlin 2019

DOI: http://dx.doi.org/10.14279/depositonce-9410

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License (CC-BY-SA).

This work was supported in part by the EU project CHANGE (FP7-ICT-257422)
and Leibniz Prize project funds of DFG (Leibniz-Preis 2011 – FKZ FE 570/4-1).

http://dx.doi.org/10.14279/depositonce-9410

Eidesstattliche Erklärung

Ich versichere an Eides statt, dass ich diese Dissertation selbständig verfasst und nur
die angegebenen Quellen und Hilfsmittel verwendet habe.

Datum Theresa Enghardt

iii

Abstract

Adverse network conditions, such as long latency or low downstream capacity, may
degrade application performance and lead to a bad Quality of Experience (QoE) for
users, such as long Web page load times or interrupted video playback. As appli-
cations are highly diverse, connectivity via a single access network may not be able
to satisfy all application needs. Since an end-user device often has multiple access
networks available, there is the potential to select between access networks or to ag-
gregate the capacity of multiple access networks. However, this potential is not yet
fully utilized due to the limitations of existing systems and the networking Appli-
cation Programming Interfaces (APIs) they provide. Many end-user devices today
default to WiFi and use cellular only as a fallback, even though WiFi may provide
suboptimal performance for some or for all applications. Existing ways of aggre-
gating multiple access networks, such as Multipath TCP (MPTCP), are typically
application-agnostic and may not provide benefits for all types of applications or for
all kinds of traffic.

Therefore, the goal of this thesis is Informed Access Network Selection (IANS) en-
abling end-user devices to select the best suitable access network(s) based on appli-
cation needs and network performance characteristics. To this end, we design Socket
Intents as an abstraction for application needs, collect network performance charac-
teristics, and design IANS policies for Web browsing and HTTP Adaptive Streaming
(HAS). We implement IANS within the Socket Intents prototype, which enables ap-
plications to communicate their needs through an enhanced networking API. Using
the Socket Intents prototype, we evaluate the performance benefits of IANS for Web
browsing and HAS compared to using a single access network and using MPTCP.

For Web browsing, we find that IANS can improve relevant Web performance metrics,
e.g., Above-The-Fold times, by between 500 and 1000 ms in the median compared
to using the faster single access network. IANS shows the most significant speedups
under asymmetric network conditions with short latency but low downstream capacity
on one network and high downstream capacity but long latency on another network.
In such cases, IANS outperforms MPTCP, as MPTCP can experience performance
problems caused by self-induced congestion on the low downstream capacity network.
For HAS, IANS shows the most significant benefits in scenarios with low available
downstream capacities. Here, we see cases in which IANS improves HAS performance
substantially, e.g., a “bad” Mean Opinion Score (MOS) of 2.1 on a single network to
a “good” MOS of 2.8, while MPTCP hurts performance as it continues to use a low
downstream capacity network.

In conclusion, we find that access network selection benefits from application aware-
ness. Especially in scenarios with low downstream capacity on one or more available
access networks, IANS improves application performance for Web browsing and HAS
by selecting the most suitable single access network or combining multiple access
networks if possible. Using an enhanced networking API allows us to make IANS
available to different applications. Moreover, such an API may enable applications
to use new protocols without requiring further modifications.

v

Abstract

Schlechte Bedingungen im Netzwerk, wie beispielsweise hohe Latenz oder niedrige
Downstream-Kapazität, können die Performance einer Applikation vermindern und
zu einem schlechten Nutzererlebnis führen, etwa zu langen Ladezeiten einer Web-
seite oder zu Unterbrechungen des Abspielens eines Videos. Da Applikationen sehr
unterschiedlich sind, kann die Anbindung durch ein einzelnes Zugangsnetzwerk mögli-
cherweise nicht die Anforderungen aller Applikationen erfüllen. Weil ein Endgerät oft
mehrere Zugangsnetzwerke zur Auswahl hat, besteht das Potential, das passendste
Netzwerk für eine Applikation auszuwählen oder die Kapazität mehrerer Zugangs-
netzwerke zusammenzufassen. Jedoch wird dieses Potential noch nicht vollständig
ausgeschöpft, da existierende Systeme und die von ihnen zur Verfügung gestellten
Netzwerk-Applikationsschnittstellen (APIs) dies oft nicht unterstützen. Viele der heu-
tigen Endgeräte benutzen automatisch WiFi und greifen auf Mobilfunknetze nur als
Reserve zurück, obwohl WiFi möglicherweise suboptimale Performance für manche
oder alle Applikationen bietet. Existierende Technologien um mehrere Zugangsnetz-
werke zusammenzufassen, wie etwa Multi-Path TCP (MPTCP), haben kein Wissen
über die Applikation und stellen möglicherweise nicht für alle Arten von Applikatio-
nen oder für allen Datenverkehr Verbesserungen bereit.

Daher ist das Ziel dieser Dissertation Informed Access Network Selection (IANS),
die Endgeräten ermöglicht, basierend auf den Bedürfnissen der Applikation und der
Netzwerkperformance das oder die am besten geeignete(n) Zugangsnetzwerk(e) aus-
zuwählen. Um dies zu erreichen, entwerfen wir Socket Intents als eine Abstraktion
für Applikationsanforderungen, ermitteln die Performanceeigenschaften der Netzwer-
ke, und entwerfen IANS-Policies für Web-Browsing und HTTP Adaptive Streaming
(HAS). Wir implementieren IANS innerhalb des Socket Intents-Prototypen, der Ap-
plikationen erlaubt, ihre Anforderungen durch eine erweiterte Netzwerk-API zu kom-
munizieren. Unter Benutzung des Socket Intents-Prototypen evaluieren wir die Per-
formanceverbesserungen durch IANS für Web-Browsing und HAS im Vergleich zu der
Benutzung eines einzelnen Zugangsnetzwerks und MPTCP.

Für Web-Browsing stellen wir fest, dass IANS relevante Web-Performance-Metriken
verbessert, indem sie beispielsweise Above-The-Fold-Zeiten um zwischen 500 und 1000
ms im Median verkürzt, verglichen mit dem schnelleren einzelnen Zugangsnetzwerk.
IANS zeigt die größten Verbesserungen unter asymmetrischen Netzwerkbedingun-
gen mit kurzer Latenz aber geringer Downstream-Kapazität auf einem Netzwerk und
hoher Downstream-Kapazität aber hoher Latenz auf einem anderen Netzwerk. In
solchen Fällen erreicht IANS eine größere Verbesserung als MPTCP, da MPTCP
Performance-Probleme herbeiführen kann, indem es das Netzwerk mit der geringeren
Downstream-Kapazität überlastet. Für HAS zeigt IANS die signifikantesten Verbesse-
rungen in Fällen, in denen nur geringe Downstream-Kapazität in den Zugangsnetzwer-
ken verfügbar ist. Hier sehen wir Fälle, in denen IANS die Performance von HAS sub-
stanziell verbessert, etwa von einem “schlechten” Mean Opinion Score (MOS) von 2.1
auf einem einzelnen Netzwerk auf einen “guten” MOS von 2.8, während MPTCP die

vii

Performance verschlechtert, da es ein Netzwerk mit geringer Downstream-Kapazität
weiterhin benutzt.

Abschließend stellen wir fest, dass die Auswahl zwischen Zugangsnetzwerken von
Applikationswissen profitiert. Insbesondere in Szenarien mit niedriger Downstream-
Kapazität auf einem oder mehreren verfügbaren Zugangsnetzwerken verbessert IANS
die Performance der Applikationen Web-Browsing und HAS, indem es das am bes-
ten passende Zugangsnetzwerk auswählt oder mehrere Zugangsnetzwerke kombiniert,
falls möglich. Die Verwendung einer erweiterten Netzwerk-API erlaubt es uns, IANS
verschiedenen Applikationen zur Verfügung zu stellen. Desweiteren kann eine sol-
che API es Applikationen ermöglichen, neue Protokolle zu verwenden, ohne dass die
Applikationen noch einmal modifiziert werden müssen.

viii

Acknowledgments

The time of doing my PhD has been an intense few years during which I have worked
with many fascinating people and learned lots of things. I have grown as a researcher,
as an engineer, and as a person. My sincere thank you goes out to all the people who
have accompanied and supported me on this path.

First of all, a huge thank you to my advisor, Anja Feldmann. Thank you for providing
me with the opportunity to do this PhD with you. You have taught me how to write
papers, how to do a proper performance evaluation, and how to analyze data. We have
had intense and less intense deadlines. Working with you has been a great experience
and has made a lasting impression on me. Thank you for having continued to be my
advisor even all the way across Germany and for having welcomed me in Saarbrücken
many times.

Thank you to my other professor, Thomas Zinner. Since you joined INET at TU
Berlin, you have held this group together and given me an abundance of feedback
and support. We have had great research discussions and collaborations on papers.
In the process, I have gained substantial knowledge about video streaming, including
the term HAS and how to model QoE – all while we still got our teaching done.
Impressively, with you, navigating the challenges of TU Berlin and handling students
has even been fun at times.

Thank you to my collaborator Philipp Tiesel for introducing me to the idea of Socket
Intents as well as coming up with cool acronyms such as IANS, MUACC, and MAM.
Thank you for many of the foundational and forward-looking design decisions within
the Socket Intents prototype and for the numerous valuable contributions that you
made to this project, our project. During our time of extensive collaboration on
papers, drafts, code, and supervising students, we have gone through a lot together.
Working with you has greatly influenced me.

Thank you to my colleagues at INET, with many of whom I have also become friends.
Thank you to Franziska Lichtblau and Florian Streibelt for your hospitality when I
visited MPI in Saarbrücken. Franziska, thank you for your feedback on my presen-
tations and thank you for encouraging me to come to a RIPE meeting. Florian,
thank you for helping me fix that code. Thank you to Mirko Palmer for sharing an
office with me in Berlin and for the discussions on MPTCP and QUIC. Thank you to
Matthias Rost for the help with algorithms and definitions. Thank you also to Thor-
ben Krüger, Thomas Krenc, Lars Prehn, Georgios Smaragdakis, Habib Mostafaei,
Susanna Schwarzmann, Apoorv Shukla, Aniss Maghsoudlou, Said Jawad Saidi, Bal-
akrishnan Chandrasekaran, and all other members of the INET family who have
walked parts of the way with me. A special thank you goes to our sysadmins, espe-
cially to Sarah Dierenfeld, Rainer May, Maxi Türke, Sabet Peters, Sebastian Lohff,
Christian Struck, and Dimitri Bulgakov. Thank you for setting up and maintaining
the IT infrastructure of this group, such as parts of the testbed that my experiments
were running on. Thank you for putting out the fires, metaphorically.

ix

Outside of the INET group, I have had the pleasure to meet and work with lots of
people in the networking community. In particular, the IETF community has made
a profound and lasting positive impression on me. Thank you especially to Brian
Trammell and Mirja Kühlewind for encouraging me to participate in this community
more and for making the transport area awesome. Thank you to all members of
the TAPS Working Group, especially to those with whom I have the pleasure to
collaborate on documents and/or code. In the wider IETF community, thank you
to Jörg Ott for the research discussions and the feedback. A special thank you goes
to Paul Hoffman. Thank you so much for telling me what I needed to hear and for
inspiring me to grow.

In the wider networking community, such as the RIPE and the Linux networking
community, thank you to Stefan Wahl for the immensely helpful comments on parts
of my thesis, and thank you to Stephen Hemminger for the feedback and discussion
on networking APIs.

Last but not least, thank you to my lovers, friends, and family. Thank you to my
girlfriend Maya for accompanying me and being my balance through all these years
and transformations. Thank you to my friends in Berlin, especially to Seba and Kai
who are regularly bringing our group of friends together. Thank you to my friend
Lena for the long phone calls and the fun biking tours. Thank you to my friend
Konstantin for proofreading parts of this thesis. Thank you to my flatmates Paula
and Miri for bearing with me even though I am rarely home, for making our living
environment comfortable, and for being good company. Thank you to my Mom and
Dad as well as my brothers for the continued support.

x

Publications

Pre-published Papers

Parts of this thesis are based on the following peer-reviewed papers that have already
been published.

I thank my collaborators for the valuable contibutions they have made. All collabo-
rators to this thesis are listed here, either as co-authors of joined publications or with
their kind of collaboration.

International Conferences

Philipp S. Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann. ”Socket
Intents: Leveraging Application Awareness for Multi-access Connectivity”. In: Pro-
ceedings of the ninth ACM conference on Emerging networking experiments and tech-
nologies. ACM CoNEXT 2013. ACM, 2013, pp. 295-300. ISBN: 978-1-4503-2101-3.
DOI: 10.1145/2535372.2535405.

Theresa Enghardt, Thomas Zinner, and Anja Feldmann. ”Web Performance Pitfalls”.
In: Choffnes D., Barcellos M. (eds) Passive and Active Measurement. PAM 2019.
Lecture Notes in Computer Science, vol 11419. Springer, Cham, pp. 286-303. ISBN:
978-3-030-15986-3. DOI: 978-3-030-15985-6.

Theresa Enghardt, Philipp S. Tiesel, Thomas Zinner, and Anja Feldmann. ”Informed
Access Network Selection: The Benefits of Socket Intents for Web Performance” In:
Zincir-Heywood N., Badonnel R. (eds) 15th International Conference on Network and
Service Management. CNSM 2019. IFIP Open Digital Library, IEEE Xplore. ISBN:
978-3-903176-24-9

Workshops and Poster Sessions

Theresa Enghardt, Philipp S. Tiesel, and Anja Feldmann. ”Metrics for access network
selection”. In: Proceedings of the Applied Networking Research Workshop. ANRW
2018. ACM. 2018, pp. 67-73 ISBN: 978-1-4503-5585-8. DOI: 10.1145/3232755.3232764.

Under submission

Parts of this thesis are based on the following paper that is currently under submis-
sion.

xi

International Conferences

Theresa Enghardt, Thomas Zinner, and Anja Feldmann. ”Using Informed Access
Network Selection to Improve HTTP Adaptive Streaming”
Under submission.

Internet-Drafts

Parts of this work have served as input to the following Internet-Drafts, which are
work items of the IETF TAPS Working Group with the goal of being published as
RFCs:

Brian Trammell, Michael Welzl, Theresa Enghardt, Gorry Fairhust, Mirja Kuehlewind,
Colin Perkins, Philipp Tiesel, and Christopher Wood. An Abstract Application Layer
Interface to Transport Services (work in progress). Internet Draft draft-ietf-taps-
interface-05. IETF, Nov. 2019
https://tools.ietf.org/html/draft-ietf-taps-interface-05

Anna Brunstrom, Tommy Pauly, Theresa Enghardt, Karl-Johan Grinnemo, Tom
Jones, Philipp S. Tiesel, Colin Perkins, Michael Welzl. Implementing Interfaces to
Transport Services (work in progress). Internet Draft draft-ietf-taps-impl-05, Nov.
2019
https://tools.ietf.org/html/draft-ietf-taps-impl-05

Parts of this work have been submitted as individual Internet-Drafts and presented
at IETF meetings:

Philipp Tiesel, Theresa Enghardt, and Anja Feldmann. Socket Intents (work in
progress). Internet Draft draft-tiesel-taps-socketintents-01. IETF, Oct. 2017
https://tools.ietf.org/html/draft-tiesel-taps-socketintents-01

Theresa Enghardt and Cyrill Krähenbühl. A Vocabulary of Path Properties (work in
progress). Internet Draft draft-enghardt-panrg-path-properties-03. IETF, Nov. 2019
https://tools.ietf.org/html/draft-enghardt-panrg-path-properties-03

Other collaborations

The design and implementation of the Socket Intents prototype was done in close
collaboration with Philipp Tiesel.

The idea for the initial version of a precursor of the Threshold Policy, called the
Earliest Arrival First Policy at the time, was developed in collaboration with Mirko
Palmer in the context of his Master thesis, which I co-supervised. Since then, the
Threshold Policy has undergone many iterations and refinements, which result in the
final version presented in this thesis.

xii

https://tools.ietf.org/html/draft-ietf-taps-interface-05
https://tools.ietf.org/html/draft-ietf-taps-impl-05
https://tools.ietf.org/html/draft-tiesel-taps-socketintents-01
https://tools.ietf.org/html/draft-enghardt-panrg-path-properties-03

The network performance characteristics gathering contains code based on contribu-
tions by Puneeth Nanjundaswamy (download rate monitoring), Sören Becker (RTT
monitoring), and Marcin Bosk (WiFi utilization monitoring). All of these con-
tributions were made as part of students projects or Bachelor theses which I co-
supervised.

Parts of the extension of the GPAC player to use Socket Intents are based on code
contributed by Patrick Kutter in the context of his Master project and Master thesis,
which I co-supervised.

Software

The following software developed as part of this work has been made publicly avail-
able:

Socket Intents prototype.
https://github.com/fg-inet/socket-intents

Web measurement tools.
https://github.com/theri/web-measurement-tools

xiii

https://github.com/fg-inet/socket-intents
https://github.com/theri/web-measurement-tools

Contents

1 Introduction 1
1.1 Goals . 3
1.2 Contributions . 3
1.3 Structure of the Thesis . 5

2 Background and Related Work 7
2.1 Access Networks . 7

2.1.1 WiFi Networks . 8
2.1.1.1 Wireless Links Using 802.11 8
2.1.1.2 Uplinks . 11

2.1.2 Cellular Networks . 14
2.1.3 Access Network Performance 17

2.2 Using Multiple Access Networks . 18
2.2.1 Multiple Access Network Scenario 18
2.2.2 Distributing Traffic Using Mobile Offloading 20
2.2.3 Multipath Protocols . 23

2.2.3.1 MPTCP Basics . 23
2.2.3.2 MPTCP Performance 25
2.2.3.3 Other Multipath Protocols 26

2.3 Systems Support . 27
2.3.1 Networking Within Hosts . 28
2.3.2 Support For Multiple Access Networks Within Operating Systems 30

3 Assessing Application Performance 33
3.1 Web Browsing . 33

3.1.1 Performance Metrics Definitions and Data Sources 33
3.1.1.1 Load Times . 34
3.1.1.2 Resource Count and Size 35

3.1.2 How To Reliably Measure Web Metrics 35
3.1.2.1 Web Metrics Comparison Methodology 35
3.1.2.2 Redirects . 36
3.1.2.3 Resource Count and Size 38
3.1.2.4 Impact on Byte Index 40

3.2 Video Streaming . 41
3.2.1 Overview . 41
3.2.2 Measuring Video Streaming Performance 43

4 Expressing Application Needs Using Socket Intents 45

5 Network Performance Characteristics for Informed Access Network
Selection 49
5.1 Desired Network Performance Characteristics 49
5.2 Network Performance Characteristics Collected in Practice 52

xv

Contents

6 Access Network Selection Policies 59
6.1 Policy Design . 59
6.2 Rule-based Informed Access Network Selection (IANS) policies 61
6.3 Threshold Policy for Web Browsing . 63

6.3.1 Threshold Policy Algorithm in Detail 63
6.3.2 Latency and Capacity Computations 64
6.3.3 Resource Load Time Estimation 66
6.3.4 Variant: Threshold Policy with Penalty 67
6.3.5 Application Support for the Threshold Policy 69

6.4 Optimist and Pessimist Policy for Video 70
6.4.1 Optimist and Pessimist Policy Algorithm in Detail 71
6.4.2 Optimist Policy: Considering an Alternative Based on Best Case 72
6.4.3 Pessimist Policy: Considering an Alternative Based on Worst

Case . 73
6.5 Selective MPTCP Policy for Video . 74

7 Socket Intents Prototype 77
7.1 Prototype Architecture . 77
7.2 Socket Intents APIs . 78

7.2.1 Socket Intents Per Connection: Enhanced Socket API 79
7.2.2 Socket Intents Per Transfer: Socketconnect API 79

7.3 Implementing Access Network Selection 80
7.3.1 Multi Access Manager . 80
7.3.2 Collecting Network Performance Characteristics 81
7.3.3 Access Network Selection Policy Implementation 82

7.4 Applications Supporting Socket Intents 82
7.4.1 Web Proxy . 83
7.4.2 Video Player . 83

8 Impact of Informed Access Network Selection on Application Perfor-
mance 85
8.1 Network Scenarios . 85
8.2 Workload . 88

8.2.1 Web . 88
8.2.2 HAS . 89

8.3 Performance Metrics . 91
8.4 Course of Experiments . 92
8.5 Network Characteristics Feasibility Study 93
8.6 IANS Benefits For Web Browsing . 96

8.6.1 Asymmetric Network Scenario: In-depth Discussion 96
8.6.2 Systematic Study of Scenarios 99
8.6.3 Performance Benefits For Different Web Pages 101
8.6.4 Performance In The Wild . 103

8.7 IANS Benefits For Video Streaming 104
8.7.1 Capacity Decrease Scenario: In-Depth Discussion 104
8.7.2 Systematic Study of Variable Capacity Scenarios 106

xvi

Contents

8.7.3 Cross-Traffic Scenarios . 110

9 Conclusion 113
9.1 Summary . 113
9.2 Discussion and Lessons Learned . 115
9.3 Future Work . 116
9.4 Outlook: Better APIs for a Better Internet 118

Glossary 119

Bibliography 123

List of Figures 131

List of Tables 133

xvii

1
Introduction

Access networks are critical components of the Internet: When a host sends traffic
to another host through the Internet, this traffic usually has to go through an access
network. As access networks provide varying network performance characteristics,
e.g., different latency and upstream as well as downstream capacity [1, 2], they are
often the bottleneck [3, 4]. Even if the bottleneck is within the backbone [5], paths
via different access networks may traverse different bottlenecks. In such cases, the
used access network may have a significant impact on application performance: Bad
conditions, such as long latency or low downstream capacity, may lead to degraded
application performance, and, thus, to an unsatisfactory Quality of Experience (QoE)
for users [6].

This problem has aggravated over the years because both user expectations regarding
application performance have grown and application demands have increased, e.g.,
in terms of short latency and high downstream capacity. For example, while video
streaming accounts for a significant share of Internet traffic, i.e., more than 40% [7]
of mobile traffic share is due to a combination of popular video on demand services,
video streaming QoE is impacted by network conditions such as limited downstream
capacities, long latencies, and packet loss. Furthermore, Web pages have increased
in size [8], which leads to an increased downstream capacity demand within access
networks for Web browsing.

Moreover, application demands are diverse. While many mobile Web pages are large,
they also include many small resources [9]. In addition, mobile applications often
issue queries of only a few kilobytes to interactively display the result to the user.
For such small resources and short queries, application performance may benefit from
a network with short latency. However, applications may also load large resources,
e.g., a photo to display to the user. Such applications may require a network with high
downstream capacity to keep user-visible delays short. The available access network
may not provide either of these network performance characteristics. Instead, it
may provide short latency, but low downstream capacity, or it may provide high
downstream capacity, but long latency.

To improve performance, either access network operators have to upgrade their net-
works, or end-user devices have to use the available networks more efficiently. As
upgrading access networks can be costly [10], there is a need to the optimize access
network usage of end-user devices. One such option is for the end-user device to use
multiple access networks at the same time. In the last ten years, this has become

1

Chapter 1 Introduction

feasible, as multiple access networks are often available [11–13]: While Internet con-
nectivity used to be scarce, i.e., only available in a few places, access network coverage
has grown. Increasingly, multiple access networks are available to a single end-user
device at the same time. Moreover, access network technology has improved, e.g., the
capacity of cellular networks has increased [14] and data plans have also increased.
Therefore, using cellular has become a feasible option even for applications with de-
mands for high downstream capacity or low latency. Finally, end-user devices often
have multiple network interfaces. Therefore, increasingly, multiple access networks
are available, and end-user devices are able to use them.

Yet, most end-user devices today only use a single access network. For example,
many mobile end-user devices default to WiFi if available and use cellular only as a
fallback [15]. Using WiFi may lead to suboptimal application performance, as WiFi
does not always provide better performance than cellular [2]. For example, a WiFi
network might be overloaded with too many end-user devices sending traffic on the
same channel, increasing latency. In addition to the wireless link itself, there might
also be limited capacity on the uplink. If the WiFi network provides long latency
or insufficient downstream capacity for the applications on the connected end-user
devices, this may lead to inadequate performance for some or for all applications.
Furthermore, WiFi networks are often limited in range. If a mobile end-user device
moves out of range while an application still has active connections, the end-user
device has to fall back to another access network, e.g., cellular. With Transmission
Control Protocol (TCP), the application has to re-establish all connections via the
cellular network, which may lead to user-visible delays within the application.

To overcome the limitations of using only a single access network, multipath trans-
port protocols such as Multipath TCP (MPTCP) [16] have been developed. MPTCP
can use multiple access networks for a single connection and, thus, aggregate their
downstream capacities. Moreover, MPTCP can provide seamless fallback in case
connectivity over one network fails. Unfortunately, MPTCP has seen limited deploy-
ment so far, as it needs support from both end-user devices and servers. Moreover,
some access networks may deploy middleboxes, which prevent MPTCP usage [17].
Even if available, MPTCP does not provide performance benefits for all traffic: Prior
work suggests that while MPTCP provides performance benefits for loading large
resources, it may not speed up loading small resources [17, 18]. In addition, MPTCP
performance may be sensitive to access networks which provide asymmetric network
performance characteristics, e.g., if one network provides shorter latency than an-
other [19]. If this access network suffers from bad performance, e.g., due to low
downstream capacity and congestion, this might have a severe impact on the perfor-
mance of the MPTCP connection.

Given the limitations of using a single access network for all traffic or aggregating
the performance of multiple networks in an application-agnostic way, there is the
need to develop new ways of selecting an access network with respect to application
requirements and network performance characteristics. Therefore, end-user devices
should choose a single access network that provides the best possible performance for
any given application, or aggregate the capacity of multiple networks.

2

1.1 Goals

1.1 Goals

The objective of this thesis is Informed Access Network Selection (IANS) using ap-
plication needs and network performance characteristics to improve application per-
formance.

To determine whether we have achieved this objective, we have to accurately assess
application performance. Hereby, we focus on the two currently most prevalent ap-
plications, Web browsing and video streaming. For Web browsing, we investigate
how to measure Web performance so that the results are realistic and reproducible
by studying different data sources and tools in detail. We complement this analysis
by showing performance metrics relevant for HTTP Adaptive Streaming (HAS).

As application needs and traffic properties are diverse, we suggest to use this in-
formation for IANS. Therefore, we investigate how an application can express what
it knows about its own traffic, i.e., what to optimize for when selecting an access
network.

To meet application needs by selecting the more suitable access network, we have to
know about the current network performance characteristics. Therefore, we examine
what network performance characteristics are available on a host and how to get
access to them.

Combining application requirements and network performance characteristics, we
study how to select an access network based on this information. In particular, we
explore strategies how to improve application performance for Web browsing and
HAS by designing IANS policies for each.

We design and implement the Socket Intents prototype to enable applications to
express their needs regarding a new connection or transfer, to get current network
performance characteristics, and to select an access network based on this informa-
tion.

Finally, we investigate the performance benefits of IANS for Web browsing and HAS
both in a controlled testbed and “in the wild”.

1.2 Contributions

Web Performance Pitfalls. First, to accurately assess Web performance, we ex-
amine different Web metrics regarding their data sources and measurement tools.
Hereby, we discover several pitfalls which may hinder realism and reproducibility,
and provide guidelines on how to mitigate them. For example, we find that ini-
tial redirects can account for a significant share of the load times of a Web page.
Therefore, when measuring Web performance, one should make a conscious choice
whether to include or exclude redirects. Furthermore, when investigating different

3

Chapter 1 Introduction

data sources for resource size and resource count of a Web page, we find that differ-
ent data sources provide different degrees of reliability: While the Content-Length is
most reliable, Resource Timings are an unreliable data source.

Socket Intents. Next, we design Socket Intents to enable applications to express
what to optimize for when selecting an access network for them. Socket Intents are
hints about what the application knows, expects, or wants to achieve regarding a
new connection or transfer. They do not represent Quality of Service requirements or
resource reservations, but are used to match application needs to the most suitable
access network(s). As applications do not necessarily know what kind of network
they prefer, different Intents exist to support different applications to express their
needs in varying levels of detail.

Gathering Network performance characteristics. To learn about the perfor-
mance of the currently available access networks, we analyze which network perfor-
mance characteristics are relevant for access network selection and how to gather
such network performance characteristics on a host. We find that latency and avail-
able downstream capacity are most relevant for the applications we consider, Web
browsing and video streaming. Furthermore, hosts are able to gather latency and
downstream capacity estimates with reasonable effort: For latency, we use Smoothed
Round Trip Times (SRTTs), while for downstream capacity, we use maximum and
currently observed data rates. As network performance characteristics may vary over
time, we use estimates observed on different time scales.

Informed Access Network Selection Policies. Finally, we combine application
needs and network performance characteristics within IANS policies, which select
the most suitable access network for a new connection or transfer. We design IANS
policies with the goal of improving the performance of Web browsing and HAS. For
Web browsing, the Threshold Policy distributes individual Web resources onto ac-
cess networks according to resource size as well as latency and available downstream
capacity of the access networks. For HAS, the Optimist Policy and Pessimist
Policy estimate the load times of video segments based on recent downstream ca-
pacity estimates. Then, the Optimist Policy additionally considers switching to an
alternative network based on the “best case” load time using long term downstream
capacity estimates. The Pessimist Policy additionally considers switching to an
alternative network based on the “worst case” load time using short-term downstream
capacity estimates. Finally, the Selective MPTCP Policy enables MPTCP only
for bulk transfers if sufficient downstream capacity is available.

Socket Intents Prototype. We implement IANS, including Socket Intents, net-
work performance characteristics gathering, and IANS policies, within the Socket
Intents prototype. The prototype offers Application Programming Interfaces (APIs)
for applications to use IANS per connection as well as per individual transfer. Using
one of these APIs, we write a Web proxy to enable IANS for Web browsing and
modify a video player to enable IANS for HAS.

Application Performance Benefits From Informed Access Network Selec-
tion. We evaluate the performance benefits of IANS for Web browsing and video

4

1.3 Structure of the Thesis

streaming via HAS in a testbed and using the actual Web servers the Web pages are
hosted on. First, we confirm that our Socket Intents prototype accurately gathers
network performance characteristics for the network scenarios we use in our evalua-
tion. Then, we investigate the benefits of IANS in a systematic study. We find that
IANS can significantly improve Web performance, e.g., reduce Above-The-Fold time
(ATF) by between 500 and 1000 ms in the median for scenarios with asymmetric
network performance characteristics. In such an asymmetric scenario, one network
provides short latency but also low downstream capacity, while another network pro-
vides high downstream capacity, but also long latency. Under such conditions, IANS
even outperforms MPTCP. For scenarios with symmetric network performance char-
acteristics, IANS improves Web performance for cases with low downstream capacity.
For scenarios with high downstream capacity on both networks, using a single network
already yields good performance, so neither IANS nor MPTCP are able to improve
ATF. For HAS, IANS can significantly improve QoE by avoiding to use a low down-
stream capacity network, thus, avoiding stalling of the video playout or loading low
representations.

1.3 Structure of the Thesis

The rest of this thesis is structured as follows: In Chapter 2, we provide background
on different access network technologies and their network performance characteris-
tics. Furthermore, we define a multiple access network scenario and review Related
Work that either shifts traffic between different access networks or aggregates them
using multipath transport protocols. We also provide background on systems support
for using multiple access networks. In Chapter 3, we examine how to accurately mea-
sure performance of two major applications, Web browsing and HAS. In Chapter 4,
we show how application traffic properties and preferences can be expressed using
Socket Intents. In Chapter 5, we analyze which network performance characteristics
may play a role in access network selection and how to gather them on a host. In
Chapter 6, we introduce IANS policies for Web browsing and HAS. In Chapter 7,
we describe the design and implementation of the Socket Intents prototype, which
includes Socket Intents, network performance characteristics gathering, and IANS
policies. In Chapter 8, we evaluate the application performance improvement that
these IANS policies can offer in different network scenarios. Finally, in Chapter 9, we
discuss our findings and provide an outlook.

5

2
Background and Related Work

In recent years, end-user devices increasingly often have the ability to connect to
multiple access networks at the same time. Two common access network technologies,
which often provide Internet connectivity to end-user devices, are WiFi and cellular.
In this chapter, we explain the aspects of WiFi and cellular networks which are
relevant for the network performance characteristics they provide to end-user devices.
Then, we present prior work examining and comparing the network performance
characteristics of these access networks.

We then describe scenarios in which multiple access networks are available and can
complement each other. We show two approaches to use these networks concurrently
proposed in Related Work. First, mobile offloading allows to shift traffic from cellular
to WiFi networks. Second, multipath transport protocols such as Multipath TCP
(MPTCP) allow transferring data over multiple networks at the same time.

For taking advantage of multiple access networks in practice, technologies utilizing
them have to be supported on actual systems. Yet, existing host Operating Systems
(OSes) have a varying degree of support for using multiple networks. We first review
the architecture of networking implementations on contemporary OSes and Applica-
tion Programming Interfaces (APIs) and then present their support for multihoming
and multipath technologies.

2.1 Access Networks

Network coverage providing access to the Internet has become nearly ubiquitous in
many parts of the world. One major technology to facilitate this access is 802.11
Wireless Local Area Network (LAN), called WiFi in the rest of this thesis. For
WiFi networks, we consider both wireless links, which often provide connectivity
between end-user devices and Access Points (APs), as well as common uplinks to the
Internet. The rationale for including uplinks in our analysis is that they may play
a significant role in the network performance characteristics that a WiFi network
offers to an end-user device. Another major type of access network technology is
mobile cellular networks, called cellular in the rest of this thesis. As different cellular
networks are deployed, we consider 2G up to 5G cellular networks. For both WiFi and
cellular networks, we provide technical background on the underlying technologies as
a foundation for understanding their network performance characteristics.

7

Chapter 2 Background and Related Work

End-user
device

ISP
network

Uplink Internet

WiFi
Access Point

LAN
(EBSS)

Figure 2.1: Architecture of a WiFi network.

2.1.1 WiFi Networks

We define a WiFi network as an access network which provides Internet connectivity
to an end-user device over an 802.11 wireless link. Figure 2.1 shows the architecture
of a WiFi network in infrastructure mode. An end-user device first becomes part
of a LAN, which corresponds to an 802.11 Extended Basic Service Set (EBSS). The
end-user device joins the LAN by associating to a WiFi AP, thus, establishing a
wireless link. Once the end-user device is part of the LAN, it can also reach hosts
outside of its LAN. For this, the end-user device needs to send its traffic via an uplink,
which connects the LAN to a larger network, e.g., an Internet Service Provider (ISP)
network. Finally, the ISP network provides connectivity to the rest of the Internet.

2.1.1.1 Wireless Links Using 802.11

In many WiFi networks, at least the initial link from the point of view of the end-user
device is a wireless link. The physical and Medium Access Control (MAC) layers of
such wireless links are defined in the 802.11 standards1.

More specifically, 802.11 refers to a family of different standards, e.g., 802.11b, g, a,
n, and ac. On the physical layer, these standards specify which frequencies within the
radio spectrum and what modulation schemes the wireless link may use. Both fre-
quencies and modulation schemes influence the network performance characteristics
of wireless links.

Frequencies used by wireless links are usually part of the unlicensed radio spectrum.
For this reason, anyone can operate a WiFi network on the frequencies made available
by regulation within an administrative area free of charge and without an individual
license. As anyone can operate a WiFi network, a wireless link may be subject to
interference from other wireless links on the same frequencies. Furthermore, WiFi net-
works may be subject to interference from non-802.11 technology, such as Bluetooth,
cordless telephones, or even microwave ovens. As such interference may distort the
wireless signal, it leads to unpredictable performance variations on wireless links.

1See, e.g., https://ieeexplore.ieee.org/servlet/opac?punumber=7786993.

8

https://ieeexplore.ieee.org/servlet/opac?punumber=7786993

2.1 Access Networks

Actual interference on a wireless link may vary depending on the used frequency band.
Most commonly, wireless links use the 2.4 GHz, the 5 GHz, and/or the 60 GHz bands.
The 802.11 standard divides these frequencies into channels with a center frequency
and a bandwidth. The frequencies actually used for communication depend on the
used channel. In general, the 2.4 GHz band provides only a few non-overlapping
channels, even if a “narrow” bandwidth of 20 MHz is used. Moreover, this frequency
band is often the default used by legacy stations over 802.11b and g. The presence of
such stations increases the chance of interference on the channel. While the 5 GHz
band has more non-overlapping channels, wireless links on this channel have a more
limited reach. Moreover, in parts of the 5 GHz band, WiFi is only the secondary user
and has to give priority to other services such as radar or military radio. On the 60
GHz band, the reach of a wireless link is even more limited.

The reason for the difference in reach of wireless links on different frequency bands is
related to radio propagation characteristics. A signal transmitted on a wireless link
experiences a decrease in signal strength with increasing distance from the source,
which is called path loss. In a line of sight through free space, usually over the air,
free-space loss expresses the power ratio between two isotropic radiators [20], i.e., a
sending and a receiving antenna. The Free-Space Path Loss (FSPL) formula2 includes
the wavelength of a signal λ as well as the distance between sender and receiver d:

FSPL = (4πd/λ)2

As the wavelength of a signal is the speed of light c divided by the signal frequency
f , path loss depends on the square of the frequency:

FSPL = (4πdf/c)2

Therefore, path loss is higher for signals on higher frequencies. Accordingly, wireless
links on the 5GHz and 60 GHz spectrum, in theory, have a higher path loss occuring
over a given distance than wireless links on the 2.4 GHz spectrum. However, in
practice, path loss is affected by more factors than distance and frequency, e.g.,
depending on the environment in which the signal propagates. For example, in an
outdoor scenario, weather conditions may influence path loss: As the 2.4 GHz band
includes the resonance frequency of water, the presence of water affects the path
loss of signals using this frequency. Moreover, path loss increases if a signal does
not propagate through free space in a direct line of sight, but has to pass through
materials other than air, such as a wall or a window. Here, depending on the material,
parts of the signal are reflected or absorbed, which further decreases the strength of
the signal passing through.

After the signal propagates from sender to receiver, whereby the signal is subject
to path loss, the power level at which the signal arrives at the receiver is called the

2This formula is derived from the Friis transmission formula, which includes antenna characteristics
such as their effective aperture.

9

Chapter 2 Background and Related Work

Received Signal Strength (RSS). As receivers have a detection threshold, i.e., a mini-
mum power level below which they can no longer decode the signal, this places a lower
bound on the RSS. This limits the path loss that a wireless link can permit before
signal decoding becomes infeasible, thus, limiting the range of wireless transmissions
on the wireless link. Moreover, signal decoding at the receiver depends on the re-
lation between RSS and noise level, the Signal-to-Noise-Ratio (SNR). If the noise
level is high, e.g., due to interference from other stations on the same frequency, this
may render signal decoding infeasible even with a high RSS because the SNR is too
low. In addition to interference by other stations, interference can also be caused
by signal propagation on different physical paths, e.g., after parts of the signal have
been reflected by a wall. If multiple versions of the same signal arrive at the receiver
at different times, they cause interference with each other, which aggravates decod-
ing the signal. However, transmitting different signals on multiple physical paths
may also be used to enhance the capacity of wireless links using multiple antennas,
which is called multiple-input multiple-output (MIMO). For example, MIMO is part
of modern WiFi standards such as 802.11n or 802.11ac. Still, path loss impacts the
capacity of such links, as maximum sending power is regulated.

Even when sender and receiver on a wireless link are within reach of each other,
so the receiver can decode a received signal, path loss affects achievable data rates.
Data rates depend on the modulation scheme with which signals on wireless links are
physically encoded. High data rates require the signal to use a “higher” modulation
scheme, which encodes more bits within a single symbol. While more efficient, such
a modulation scheme makes signal decoding more error-prone. Thus, when decoding
the signal, the receiver requires a high SNR. The SNR is the difference between the
RSS and the background noise at the receiver and the quantization noise of the A/D
converter. Generally, a high SNR allows more efficient modulation schemes for a
signal. Higher modulation leads to higher potential data rates for receivers that are
closer to the sender. Furthermore, as modulation schemes are specified in the different
802.11 standards, stations which support more recent 802.11 standards support more
efficient modulation schemes. In contrast, stations which only support legacy 802.11
standards use less efficient modulation schemes.

In addition to providing lower data rates, less efficient modulation schemes also oc-
cupy more airtime on the wireless channel. Airtime is relevant for the capacity, i.e.,
the actual throughput that a station can achieve, on the wireless link: All stations on
the channel have to share the same frequencies and only one station can transmit at a
time. If a legacy station does not support higher modulation schemes, it uses a lower
modulation scheme. Using a lower modulation scheme, sending the same frame takes
longer, so other stations are blocked from sending for a longer amount of time.

As more stations, legacy or not, occupy a channel, capacity for a single station de-
creases more than linearly. The reason for this lies in the way the 802.11 MAC Layer
manages how multiple stations access the channel: Carrier Sense Multiple Access/
Collision Avoidance (CSMA/CA). A station that wants to transmit data first has to
listen whether another transmission is already in progress. Once the station senses
the channel free, it waits to send by starting its own timer. The waiting period con-

10

2.1 Access Networks

sists of an Inter Frame Spacing (IFS) and a Contention Window. The length of the
IFS depends on the type of 802.11 frame to be transmitted: Short IFS for control
frames such as acknowledgments, Distributed Coordination Function IFS for data
frames. The Contention Window consists of a random number of backoff slots. The
station picks a random number between 0 and CWmin, the initial maximal value of
the Contention Window. It waits for this amount of backoff slots, pausing its timer if
it senses that another station has started transmitting, and resuming the timer once
the channel is free again. Once its timer reaches zero, the station transmits and waits
for an acknowledgment. By randomizing the Contention Window, the probability
of collisions is decreased. However, collisions are still possible, because two stations
might still pick the same number. Moreover, frame loss can still occur, e.g., due
to random signal corruption or interference by non-802.11 stations. Consequently,
if the station does not receive an 802.11 acknowledgment within a certain period of
time, it retransmits the frame. To reduce the risk of collision, the station performs
exponential backoff: For the i-th retransmission attempt, it picks the length of the
Contention Window between 0 and 2i ∗ CWmin. Once the transmission is success-
ful, i.e., the station receives an acknowledgment, it resets i to 0. This mechanism
increases robustness to collisions and improves the chance of successful data trans-
mission even on a highly utilized wireless link. However, this robustness comes at the
cost of inflated latency and decreased capacity.

As each wireless channel is subject to the above limitations, in WiFi networks with
a high number of users, it is common to deploy multiple APs on different channels.
Each of these APs comprises a Basic Service Set with its own identifier, its BSSID.
One or multiple BSSes can form a logical network of an EBSS. Each logical network
has its own SSID, i.e., a natural-language network name, which is displayed to a user
when connecting their end-user device to the WiFi network. In Figure 2.1 we call an
EBSS, or logical WiFi network, a LAN.

APs of the same EBSS can be interconnected via a Distribution System, which can
be wired or wireless. If an end-user device is mobile, it can roam within the same
EBSS, but not across different EBSSes. This limits the reach of the logical WiFi
network. If an end-user device leaves the range of the WiFi network, this may lead
to disruption of communication, as the end-user device has to either associate to a
different WiFi network or use a different access network technology.

In summary, network performance characteristics offered by WiFi networks can be
highly variable in terms of latency and capacity. This depends, for example, on the
number of stations connected to the same BSS, and on their level of activity. With
more stations and more transmissions, the likelihood of collision increases, which
leads to exponential backoff in the contention window.

2.1.1.2 Uplinks

While wireless links may limit data rates available to end-user devices and incur
latencies, they are not always the performance bottleneck [3]. Uplinks are another

11

Chapter 2 Background and Related Work

possible location of the bottleneck within an access network. Here, we consider access
networks as divided into a core network, a distribution network, the “last mile”, and
the LAN. In this case, the uplink covers the last mile. In the context of a WiFi
network, we define the uplink as the logical link between the Local Area Network and
the ISP network, see Figure 2.1. This logical link might consist of multiple physical
links. Often, those are the links between the Customer Premises Equipment (CPE),
e.g., a router or switch deployed on the end-user site, and the ISP network. The
performance of an access network is impacted both by the capabilities of the CPE
and by the network performance characteristics of the technology used on the uplink.
Next, we describe different technologies which are commonly used for uplinks.

One such uplink technology is Digital Subscriber Line (DSL). DSL utilizes twisted-
pair copper cables to provide a dedicated physical link between a DSL modem and a
DSL Access Multiplexer (DSLAM). While the DSL modem is often part of a LAN on
the end-user site, the DSLAM is often located on premises controlled by or accessible
to the ISP. For example, this can be a street cabinet, a distribution center, or the
basement of a building. The DSLAM encodes and decodes data between the access
modem and upstream networks and it aggregates signals from multiple DSL modems,
i.e., multiple end-user sites. Maximum available data rates vary based on the DSL
standard3. With Asymmetric DSL (ADSL), data rates differ on the upstream and
downstream. Maximum data rates range from up to 12 Mbit/s downstream and
1.8 Mbit/s upstream, which is ADSL 1, to 24 Mbit/s downstream and 3.5 Mbit/s
upstream, which is ADSL 2+. With Very High Speed DSL (VDSL), data rates
increase to 52 Mbit/s downstream and 16 Mbit/s upstream. Finally, with VDSL2,
data rates may exceed 100 Mbit/s in both upstream and downstream directions.
In practice, achievable data rates are limited by the distance between modem and
DSLAM. This is because the signal is attenuated on the cable, i.e., its SNR decreases
with distance. Furthermore, a signal may be distorted due to crosstalk between
multiple cables to the same DSLAM. Thus, data rates are limited by the distance
between the DSLAM and the DSL modem. Furthermore, a DSL uplink may incur
additional latency due to Interleaving: One endpoint of the DSL link may interleave
data frames before splitting them onto different subcarriers on the physical link when
transmitting them. Because errors on a physical link often occur in bursts, this
technique spreads the error across multiple data frames, which aids Forward Error
Correction. While this increases robustness to line noise, it also adds latency.

Another common uplink technology uses coaxial cables to connect a LAN to a cable
operator network. Here, a cable modem within the LAN connects to a Cable Modem
Termination System (CMTS), which receives signals and converts them to Ethernet.
This technology is standardized in the Data Over Cable Service Interface Specifica-
tion (DOCSIS), with the most recent version being DOCSIS 3.1. Data rates, again,
depend on the version of the standard and the number of channels, i.e., frequencies,
which can be used for up- and downlink. With DOCSIS 2.0, data rates of up to
42.88 Mbit/s are specified on the downlink and 30.72 Mbit/s on the uplink. DOCSIS

3DSL is standardized by different organizations, e.g., ANSI in the US, ETSI in Europe, or the
ITU-T, which is international.

12

2.1 Access Networks

3.0 can achieve more than 1 Gbit/s on the downlink and 200 Mbit/s on the uplink
by bundling multiple channels and DOCSIS 3.1 increases maximum data rates even
more, providing up to 10 Gbit/s in both directions. However, data rates for indi-
vidual customers may be lower due to rate limitation based on the service plan of
the customer implemented at the CMTS. Additionally, coaxial cables are a shared
medium. Therefore, in practice, data rates may vary based on the network utilization
of all users connected to the same CMTS.

In some enterprise or campus networks, the uplink may be realized using Ethernet
over a twisted pair copper cable or fiber. With fiber, data is transmitted through fiber-
optic glass strands using laser pulses and amplitude modulation. Fiber can provide
high data rates, with a capacity of, e.g., 560 Tbits/s for the band between wavelengths
of 1300 and 1620 nm [21]. Data rates in practice often depend on the terminal
equipment rather than the fiber itself. While providers often advertise high speeds
such as 1 Gbit/s, data rates in practice may be lower due to host issues [22]. Moreover,
deploying fiber is very costly. In access networks, fiber network architectures are
named after how far the ISP deploys fiber along the path to the end-user device. For
example, if fiber is deployed up to the LAN, i.e, including the uplink to the end-user
site, this corresponds to Fiber To The Home (FTTH). If fiber is deployed up until the
building that the LAN is located in, this is called Fiber To The Building (FTTB).
As an alternative to deploying fiber for the uplink, a network operator can increase
the capacity of its cable or DSL network by deploying Fiber to the Curb (FTTC),
i.e., up to the street cabinet or distribution center. Often, instead of deploying a
dedicated fiber for each customer, ISPs deploy a shared fiber which serves multiple
sites along a part of the path. In this case, the signal has to be split at some point
to be distributed to the individual sites. This split can be realized as an Active
Optical Network (AON), in which an electrically powered switch or router forwards
the packets to and from each site. Alternatively, with a Passive Optical Network
(PON), an unpowered optical splitter is used to distribute the signal, which is more
cost-effective. Due to its high capacity, fiber is expected to be the technology of choice
for aggregation within access networks and for providing backhaul to core networks.
Common maximum data rates are 10 Gbit/s in the backhaul and 1 Gbit/s to customer
routers. For fiber, data rates are usually limited by the terminal equipment instead
of the fiber itself. Therefore, ISPs are able to increase data rates by upgrading the
terminal equipment.

Finally, the uplink can be realized using satellite communications. Here, the ISP
deploys a constellation of satellites which send and receive data from ground stations
and relay data between different satellites. As such satellite communication systems
may provide broad or even global coverage, they can be used to connect remote places
to the Internet, where no other uplink technology is available. Network performance
characteristics of satellite communication systems depend on the distance between
the satellites and ground stations. Historically, such systems were often deployed
in geostationary orbit (GEO), in which the satellite appears stationary in the same
position to the ground station. While this has the advantage that the antenna of the
ground station does not have to track the satellite, the long distance between satellite
and ground station results in long latencies. More recently, communication satellites

13

Chapter 2 Background and Related Work

are using Medium Earth Orbit (MEO) and Lower Earth Orbit (LEO) as well. Here,
satellites orbit the earth at a higher speed and do not remain in the same position
from the point of view of the ground station. Therefore, more satellites are required
to provide continuous connectivity. However, due to the decreased distance, latencies
are shorter. Moreover, with decreased distances, path loss decreases, which results in
higher achievable data rates and/or lower required signal strength at senders. Satellite
communication uses high frequencies and may achieve high downstream capacity. For
example, satellite systems on the Ku band between 12 and 18 GHz may achieve a
downstream capacity of 506 Mbit/s4.

While uplink technologies are diverse and deployed with increasing coverage, not all
uplink technologies are available everywhere. Broadband coverage reports [11, 12]
provide data on the availability and data rates of different uplink technologies across
the world. In general, DSL is available in many parts of the world. This is because
telephone network operators have deployed twisted-pair copper cables to connect
homes to the telephony network. Then, the same operators can repurpose their
existing infrastructure to provide Internet connectivity. In the same way, cables
originally deployed to provide cable television can be repurposed by cable network
operators. While DSL is widely available throughout Europe [13], cable has the
largest market share in the US. Additionally, cable is available to 80% or more of the
population in Canada, Belgium, Korea, the Netherlands, and Switzerland, according
to the 2013 OECD communications outlook [11]. However, the availability of cable
is below 20% for other countries, such as France, Italy, Mexico, New Zealand, Spain,
and Turkey [11]. In general, economic factors play a large role in deploying access
networks. In addition to equipment costs, deploying communication links may be
costly and an ISP may not have a financial incentive to, e.g., serve rural regions with
high-speed Internet access. Therefore, even with the advance of access technologies,
deployment may vary depending on the locality and still pose a challenge.

Even with increased deployment of access network technologies, as application traffic
increases as well, the actual network performance may vary depending on the number
of concurrent users and/or applications. Therefore, the performance bottleneck of an
application may be within the access network, i.e., within the LAN or the uplink.
Determining whether the bottleneck is within the LAN or the uplink is challenging [3].
If the bottleneck is within the core network, paths through different access networks
may traverse different bottlenecks.

2.1.2 Cellular Networks

In many parts of the world, end-user devices can connect to cellular mobile networks
to access the Internet. Figure 2.2 shows the generic architecture of a cellular network.
The end-user device connects to a cell by associating to a base station provided by
a mobile network operator, the ISP. Similar to WiFi networks, the first link from
the point of view of the end-user device is wireless. The cellular base station is then

4See https://www.newtec.eu/frontend/files/userfiles/files/App%20Note%20IP%20Trunking%20Rev01.

pdf, last accessed 04. June 2019.

14

https://www.newtec.eu/frontend/files/userfiles/files/App%20Note%20IP%20Trunking%20Rev01.pdf
https://www.newtec.eu/frontend/files/userfiles/files/App%20Note%20IP%20Trunking%20Rev01.pdf

2.1 Access Networks

ISP network
(backbone)

Internet

Gateway
Gateway

Cell

Base
station

End-user
device

Figure 2.2: Architecture of a cellular network.

connected to the mobile ISP’s network, i.e., the backbone, over a wired link. In
the backbone, the base station is usually connected to a gateway that provides data
services. Usually, this gateway connects to another gateway, which, in turn, links the
mobile ISP’s network to the rest of the Internet.

In contrast to WiFi, the cellular base station is more tightly integrated into the oper-
ator network than a WiFi AP is integrated into an ISP network. Moreover, a single
cellular tower may cover multiple cells by using directional antennas, which are send-
ing and receiving on different frequencies in different directions. As the link between
base station and operator network is usually realized via fiber, this makes this link
less likely to be the bottleneck. However, this link may still be the bottleneck in some
cases, as fiber may not always be deployed for economical reasons [23]. Alternatively,
capacity bottlenecks may be located on the wireless link or within the wired network
between base station and remote host [5]. Moreover, cellular networks may present
a latency bottleneck, for example, due the power state transitions within cellular
devices’ radios [24] and signaling overhead within the backbone [25].

The wireless link within the cellular network is subject to similar limitations as a
wireless link within a WiFi network. For example, it experiences path loss, see
Section 2.1.1.1. Different from WiFi, a cellular wireless link usually operates within
licensed radio spectrum. Only the network operator who has a license to a certain
frequency band can operate a base station using the frequencies in this band. Thus,
there is usually no interference by other cellular networks on the same radio frequency.
Consequently, the capacity on the same channel does not have to be shared by cellular
devices in the same way as in WiFi. Rather, the channel can be divided into different
subcarriers, e.g., based on frequency and time. A cellular standard may define a
frame structure of time slots. These time slots determine, e.g., at what times the
base station sends control information to cellular devices, and at what times cellular
devices may send data. Furthermore, the base station can control what time slots
and frequencies to make available to which cellular device. In this way, the network
controls how much capacity is allocated to each connected cellular device. This way
of allocating resources enables cellular networks to provide a more reliable upstream
and downstream capacity than WiFi networks.

Similar to WiFi, the radio modulation technology used for data transmission depends
on the used standard. Furthermore, each standard describes the architecture of the

15

Chapter 2 Background and Related Work

backbone network. It specifies the components that the backbone contains along with
their functionality. The 3rd Generation Partnership Project (3GPP) defines cellular
network standards in multiple generations.

In cellular networks, the earliest standard to provide data transmission services is
General Packet Radio Service (GPRS). GPRS is part of the second generation (2G)
of cellular network standards, Global System for Mobile Communications (GSM),
and is often called 2.5G. It re-uses the existing cellular infrastructure designed for
voice communications and provides very low data rates of between 56 and 114 kbit/s.
Within 2G, Enhanced Data Rates for GSM Evolution (EDGE) increases data rates to
up to 236 kbit/s by using more efficient modulation schemes and combining multiple
time slots.

The third generation (3G) of cellular standards introduces separate network compo-
nents for voice, i.e., circuit switched services, and data, i.e., packet switched services.
While 3G radio technology used on the wireless link is completely different from 2G,
higher protocol layers reuse functionality from 2G. Data rates depend on the stan-
dard within 3G. The original Universal Mobile Telecommunications System (UMTS)
provides nominal data rates of 384 kbit/s downstream and 128 kbit/s upstream. High
Speed Packet Access (HSPA), a more advanced release, advertises with a capacity of
up to 84 MBit/s downstream and 22 MBit/s upstream.

Long Term Evolution (LTE) and its advanced releases represent the fourth generation
(4G) of cellular network standards. Again, 4G provides a different physical layer on its
wireless links than the previous generation. The 4G physical layer allocates resource
blocks which are arranged in a frame structure over time. 4G networks are based
on IP, which greatly simplifies the protocol stack compared to 3G. Similar to the
previous generations, there are different releases with different theoretically available
data rates.

Finally, the fifth generation (5G) of mobile cellular networks currently is still in de-
velopment. 5G envisions to provide connectivity for a diverse set of applications with
different performance requirements in terms of latency, data rate, and energy effi-
ciency. For different use cases, there exist different traffic profiles, each with its own
parameter set. For example, to deliver high bitrate video streams to end-user devices
in urban areas, 5G may use the 36 GHz spectrum to deliver even higher data rates
and lower latencies than LTE. For other use cases, such as Internet of Things (IoT),
the required data rates are lower, but such cellular devices may need to send data
over a longer range with higher energy efficiency. To achieve the goal of providing
the best possible performance based on the use case and application requirements,
5G virtualizes network resources and provides “slices” optimized for a specific ser-
vice. For example, 5G can offer connectivity using different frequency bands: While
low frequency bands provides a longer range, high frequency bands provide higher
upstream and downstream capacities. In addition to using licensed frequency bands,
5G may also coexist with WiFi on the unlicensed spectrum, making network slices
available on the same frequencies. Moreover, 5G aims to reduce operating costs using
Network Function Virtualization (NFV): It decouples functions performed within the

16

2.1 Access Networks

network from the hardware they are implemented on, running functions such as Net-
work Address Translation (NAT), firewalls, or intrusion detection on virtual machines
instead.

Over the generations, cellular networks provide greatly varying network performance
characteristics. Historically, cellular networks have offered limited upstream and
downstream capacities and long latencies. However, the general tendency is that
performance is improving.

2.1.3 Access Network Performance

When multiple networks are available, there is the question which of these networks
to use. To answer this question, it is crucial to understand the performance provided
by WiFi and cellular networks in practice.

Sommers et al. [1] compare cellular and WiFi performance when both are available
to end-user devices. In their study, they observe end-user devices in 15 metropolitan
areas, of which nine are located in the US, three are located in Europe, and three
in the Asia-Pacific region. The authors evaluate data gathered over the course of
15 weeks between February 2011 and June 2011. To measure latency and capacity,
they transfer files of fixed sizes and perform pings over HyperText Transfer Pro-
tocol (HTTP) between mobile end-user devices and Speedtest servers. According
to their measurements, in 2011, WiFi generally provides a better absolute up- and
downstream capacity and a higher degree of consistency in performance. Also, WiFi
provides a shorter absolute latency, but cellular has a higher consistency in latency.
Throughput and latency vary widely between network technologies and providers. Fi-
nally, they find that overall consistency of performance in wireless networks is much
lower than in wired broadband networks.

Deng et al. [2] study the performance of WiFi and cellular LTE networks using a
dedicated mobile app between September 2013 and May 2014. They compare data
from 750 users in 16 different countries across the world. In cases where end-user
devices have both WiFi and cellular available, via both networks, they upload and
download a large file over Transmission Control Protocol (TCP) from a dedicated
server in the US to measure capacity. Additionally, they estimate Round Trip Time
(RTT) using pings between the end-user device and the server. Contrary to the
assumption that WiFi networks outperform cellular, which was common at the time,
their study shows that LTE outperforms WiFi 40% of the time, with a potential
capacity difference of more than 10 Mbit/s in either up- or downstream. In 20% of
cases, even ping RTTs are lower for LTE than for WiFi.

While access networks have evolved since 2014, unfortunately, there are no more
recent large-scale academic performance studies available. However, industry re-
ports [26] indicate an increase in upstream and downstream capacity both for fixed
(e.g., WiFi with a fixed-line uplink) and mobile (e.g., LTE) networks, but still vary
greatly among geographic locations and network providers. Here, fixed networks
provide a higher capacity than cellular in most geographic regions. Note that such

17

Chapter 2 Background and Related Work

WiFi
network

Cellular
network Internet

Figure 2.3: Scenario where multiple access networks are available.

reports are not directly comparable with the studies by Related Work because they
do not restrict data points to scenarios in which both WiFi and cellular are available
to the same end-user device at the same time.

In summary, both performance studies show that WiFi and cellular performance for
end-user devices are highly variable and that recently, there is often not one obvious
“better” access network. While cellular performance is usually worse than WiFi in
early studies, this changes with the introduction of LTE. Nowadays, WiFi and cellular
networks are likely to complement each other. Our work builds on these observations
by monitoring network performance characteristics on an end-user device and using
this information as input for access network selection.

2.2 Using Multiple Access Networks

Increasingly, multiple access networks are available to an end-user device at the same
time. In this section, we explore scenarios in which multiple access networks are
available and define the scenario that this thesis focuses on.

Given the increased availability of multiple access networks and their varying network
performance characteristics, related work has explored how to take advantage of them.
While mobile data offloading selects between access networks, multipath transport
protocols use the available networks in parallel.

2.2.1 Multiple Access Network Scenario

We define a multiple access network scenario as a situation in which an end-user
device is able to connect to a remote host via multiple access networks at the same
time, as shown in Figure 2.3. An end-user device is a host which a human uses to
communicate with others or to access content using applications such as Web browsing
or video streaming. Common examples of end-user devices are desktop PCs, laptops,
smartphones, and tablets. End-user devices are often mobile.

18

2.2 Using Multiple Access Networks

An access network is a network which connects an end-user device to the Internet.
This thesis focuses on two types of access networks: WiFi networks as defined in
Section 2.1.1 and cellular networks as defined in Section 2.1.2. As shown in Figure 2.3,
a multiple access network scenario implies that the end-user device can reach a remote
server through each access network, i.e., using different paths. These paths may be
either completely disjoint or share one or more hops.

As such, a multiple access network scenario is a special case of a multihomed host [27].
A multihomed host is a host that has multiple IP addresses, e.g., if it is connected
via multiple network interfaces to the same or different networks at the same time.
In a multiple access network scenario, an end-user device is multihomed. Hereby, the
end-user device is connected via its network interfaces to multiple different access
networks. From each connected access network, the end-user device receives one or
multiple IP addresses and additional configuration, such as a default gateway to reach
the Internet.

A multiple access network scenario requires that different access networks, e.g., a
WiFi and a cellular network, are deployed in such a way they are available in the
same geographic location. These networks may be operated by the same provider or
by different providers. Furthermore, the end-user device needs to be connected to
these multiple networks simultaneously. This requires that the end-user device has
multiple network interfaces built in or can use them through additional hardware,
e.g., a cellular modem implemented within a USB stick5. Furthermore, the end-
user device has to support multihoming to some degree, e.g., it must be able to
establish connections over multiple local network interfaces at the same time. Such
basic support is usually available on contemporary end-user devices, even when more
sophisticated technologies to leverage multiple access networks are not supported. See
Section 2.3 for a detailed discussion of multihoming support on end-user devices.

As end-user devices often support multihoming, a multiple access network scenario
can occur in many cases in which multiple access networks are deployed in the same
location. For example, this is the case in many end-user homes or in public places
such as cafés. In such places, often, there is both a WiFi network as well as a cellular
network available. Here, either cellular or WiFi networks may sometimes provide sub-
optimal performance, e.g., due to network overload on the WiFi, limitations on the
uplink, or an overloaded cellular network. Such degraded performance may motivate
moving from WiFi to cellular or vice versa. For example, limited capacity on cellular
networks is the main motivation of offloading, see Section 2.2.2. In some cases, the
uplink in the WiFi network limits available capacity to a point where it becomes
reasonable to provide additional capacity using cellular. For example, such capacity
limitations on the uplink motivate ISPs to offer “hybrid connectivity” supplemented
by LTE, e.g., in some rural areas. While this use case is not covered by our multi-
ple access network scenario, it highlights that the need to aggregate multiple access
networks exists in practice.

5Additional nontechnical requirements, such as an active subscription to a mobile network provider,
are out of scope for this thesis.

19

Chapter 2 Background and Related Work

In addition to home networks or other small LANs, multiple access networks may
be available in larger networks, such as enterprise networks, campus networks, or
urban areas with public WiFi APs. Here, uplink capacity limitations may still play
a role in some cases. Moreover, if end-user devices move within such networks, this
may result in changing network performance characteristics over time. Here, which
network provides the best connectivity may change over time, or a network may
become unavailable due to the end-user device moving out of range.

In all these cases, making a good choice between the available access networks or
using multiple access networks at the same time may be beneficial for an end-user
device.

2.2.2 Distributing Traffic Using Mobile Offloading

Networks vary not only in terms of performance but also in terms of load and cost
to operate. If a mobile network is heavily utilized, a network operator may choose to
offload traffic from their cellular networks to WiFi. Their goal is to avoid degrading
Quality of Experience (QoE) while handling an increased number of users with an
increased network capacity demand.

Aijaz et al. [28] survey several approaches to offloading that can be deployed by mobile
network operators in cellular 3G and 4G networks. For offloading via WiFi, they
contrast unmanaged data offloading with managed data offloading. In the former case,
end-user devices transparently move traffic onto WiFi and completely bypass cellular
networks. In the latter case, operators places gateways within WiFi networks to
maintain control over subscribers. With integrated data offloading, operators further
increase the degree of cooperation between WiFi and cellular networks by transferring
data between end-user devices and cellular core networks via WiFi. The benefits for
operators to use a more integrated solution are increased control of subscribers and
the ability to deliver content from the core network via WiFi. The integration of
WiFi into cellular networks is standardized both in the 3GPP, via technologies such
as I-WLAN, and in the Internet Engineering Task Force (IETF), via IP flow mobility
for Proxy Mobile IPv6 (IFOM).

Mallawi et al. [29] provide a comprehensive survey of offloading techniques. They
describe several approaches: First, Device-to-Device communication, where end-user
devices serve as content caches for other end-user devices, potentially using wireless
interfaces other than cellular, e.g., WiFi or bluetooth. Second, they describe small
cells, whereby an operator deploys additional cellular base stations with reduced cov-
erage, i.e., femtocells. Then, cellular devices can associate to this smaller cell instead
of congesting the larger cell. Third, WiFi Alternative Path, whereby operators deploy
WiFi APs. For the latter, providers may need mechanisms to enable internetwork-
ing between WiFi and cellular, e.g., Mobile IP (MIP) and Proxy MIP. The survey
also explores strategies to determine what traffic to offload: For example, operators
may choose to offload traffic only for certain users or only traffic of specific types of
service such as Voice over IP (VoIP) or video streaming. Furthermore, in scenarios

20

2.2 Using Multiple Access Networks

where mobility solutions are not deployed, operators may choose to not offload ses-
sions for which disruption of the connection results in a negative impact on QoE. In
the survey, the authors recommend to offload live streaming, buffered streaming, and
low-priority voice traffic to WiFi. They then discuss where the offloading decision
should be made: On end-user devices or in the core network. On end-user devices,
multiple aspects have to be taken into account, such as operator objectives, end-user
needs, service requirements, access point limitations, and others. These objectives
may be contradictory, e.g., when balancing the best connectivity with energy saving.
In the core, any entity making offloading decisions has to gather information from
end-user devices, e.g., the user’s subscription, network capabilities, network condi-
tions, and end-user device characteristics. The authors of the survey mention several
possible sources of information, but indicate that further work is required.

As the work in this thesis does not need any integration between WiFi and cellular
networks and does not interact with the network infrastructure, it is most similar to
WiFi Alternative Path as an “Over-The-Top” solution. In our approach, offloading
decisions are made on end-user devices and primarily consider end-user needs for
good application performance.

Different strategies to determine what traffic to offload are explored by Wiethölter
et al. [30]. They compare algorithms to determine for which mobile subscribers to
shift traffic to cellular or WiFi networks. A common offloading strategy is based
on RSS with random selection of users. As an alternative, the authors propose a
“Cost-Function Approach” based on clients’ throughput efficiency and incurred WiFi
channel load. By simulating scenarios with mobile networks of different cell sizes and
mobile users with Voice over IP and FTP traffic, the authors find that their approach
outperforms other selection schemes especially in smaller cells. However, the RSS-
based approach provides slightly higher goodput in scenarios with larger cell sizes,
which the authors deem more unrealistic.

While offloading focuses on shifting traffic from cellular to WiFi, Rossi et al. [31] pro-
pose 3G Onloading, which shifts traffic from WiFi to cellular. The authors motivate
this approach by the observation that WiFi network capacity is sometimes limited
by the uplink capacity behind a WiFi AP, e.g., an ADSL line with limited band-
width. Onloading can be realized either as a network-integrated solution for a single
provider, for multiple providers, or without any network integration, i.e., as an OTT
solution. Onloading bases its offloading decisions on estimations of “leftover band-
width” based on diurnal traffic patterns, i.e., cellular and Wifi network usage peaks
at different times of day. In cases where a WiFi network has limited capacity, On-
loading uses an available cellular network to provide more capacity at the beginning
of a transfer. The cellular network is only used in cases where the user still has data
volume available. Both in their simulations and using their prototype in different
European residential locations, the authors find that Onloading can improve upload
and download times for video on demand and reduce video pre-buffering times.

Gadgil et al [32] evaluate the performance of IFOM in LTE and WiFi networks. They
simulate an urban deployment of cellular networks and WiFi APs and consider VoIP,
video, and FTP traffic. They keep real-time traffic such as VoIP and video on cellular

21

Chapter 2 Background and Related Work

networks while offloading non-real time flows. For example, they shift Web traffic and
FTP flows to WiFi when it provides a better link quality, i.e., a higher capacity for
an individual end-user device. In this case, IFOM-enabled end-user devices benefit
from a higher capacity while keeping latencies for real-time traffic low even under
high load.

A solution with limited cooperation between network operator and end-user device is
proposed by Gerasimenko et al. [33]. Here, the network provides information about its
own load, and end-user devices decide to offload traffic based on either a baseline RSS-
based threshold algorithm or a load-aware algorithm. In the latter algorithm, end-user
devices use the predicted network capacity as advertised by the network, exclude APs
with low RSS, and combine their capacity estimates with actually observed capacity.
In their simulation, the authors find that the load-aware algorithm they propose
provides higher capacity. However, they have to limit excessive switching between
different access networks using a hysteresis mechanism.

In contrast to network-integrated solutions, Wamser et al. [34] evaluate an OTT
solution. Here, a gateway outside of the access network distributes traffic across
multiple access networks. As this gateway can monitor application quality metrics,
e.g., for video streaming, it can distribute traffic across access networks based on
application needs. The proposed algorithms for traffic distribution are based on the
required capacity for a video stream and on an estimate of the corresponding video
playout buffer at the client. In their testbed measurements, the authors find that the
proposed algorithms improve QoE for end users in cases where one network cannot
provide sufficient capacity. Furthermore, their buffer-based algorithms greatly reduce
energy consumption and cellular data volume consumption.

Another solution which does not require network integration is Delphi [35], which
proposes a transport-layer module on mobile end-user devices for access network
selection. They identify objectives for different applications, such as minimizing de-
lay for VoIP, maximizing capacity for video streaming applications and background
traffic, or minimizing energy consumption for applications that periodically need to
synchronize. They then apply local learning to network performance characteristics
such as RSS, RTT, WiFi APs, packet loss rate, network load, and observed capacity,
and share this information between nodes in the same WiFi network. Finally, they
select the most suitable network according to high capacity.

In summary, existing offloading solutions focus on network-integrated or OTT solu-
tions with in-network support, e.g., by application service providers. Informed Access
Network Selection (IANS) does not require any support within the network or by re-
mote hosts. Instead, IANS gathers information and makes access network selection
decisions only on end-user devices while taking application information into account
in order to improve end-user QoE. Similar to the above studies, our work leverages
the observation that different kinds of traffic require different access network selection
strategies.

22

2.2 Using Multiple Access Networks

2.2.3 Multipath Protocols

In addition to offloading traffic from WiFi to cellular or vice versa, it is possible to
combine both networks using multipath transport protocols. For example, MPTCP
allows a single connection to utilize multiple access networks. We first provide details
on how MPTCP achieves this and then present MPTCP design considerations and
performance studies. Finally, we discuss multipath protocols other than MPTCP.

2.2.3.1 MPTCP Basics

MPTCP [16] adds multipath capabilities to TCP. By itself, TCP only allows open-
ing a connection between a single pair of local and remote IP address, which the
connection is then bound to. Consequently, with TCP, it is not possible to open a
single connection over multiple networks at once. Furthermore, if one endpoint of
a TCP connection moves to another network, this changes the IP address that the
connection is bound to, so the connection breaks.

MPTCP enables a single transport-layer connection to be established between multi-
ple pairs of local and remote IP addresses and/or ports. If multiple local IP addresses
correspond to multiple local network interfaces, which are connected to multiple ac-
cess networks, the connection can use these networks simultaneously. Hereby, each
pair of local and remote IP address corresponds to one subflow. After establishing
an MPTCP connection with multiple subflows, the host can send and receive data
via all subflows, and, thus, combine the capacities of multiple networks. In addi-
tion, MPTCP may increase resilience to connection disruption. If a local IP address
changes or a network interface loses its connectivity, this only impacts one subflow
instead of the entire connection. Then, the host can still use other subflows on the
same connection and also establish a new subflow for the same connection over a
different local network interface.

Figure 2.4 shows how a TCP connection and an MPTCP connection are established
between two hosts A and B. In a TCP handshake, see Figure 2.4a, host A first sends
a TCP segment with the SYN flag set. Host B replies with a segment setting both
SYN and ACK. Finally, host A sends an ACK, at which point the TCP connection
is established. To establish an MPTCP connection, host A first has to establish a
primary subflow as shown in Figure 2.4b. Similar to a TCP handshake, host A first
sends a TCP segment with the SYN flag set. However, in the TCP header of this
segment, host A also sets a TCP option named MP_CAPABLE and includes its key
KeyA. Assuming host B supports MPTCP, when host B replies with a SYN-ACK, it
also sets the MP_CAPABLE option in the TCP header, which contains its key KeyB.
When sending the final ACK to establish the subflow, host A repeats both keys and
provides an initial Data Sequence Mapping. A Data Sequence Mapping matches
sequence numbers of individual subflows to Data Sequence Numbers (DSNs) for an
entire MPTCP connection. Therefore, DSNs enable an MPTCP receiver to reorder
data received across different subflows. Once the primary subflow is established,
either host can open additional subflows, e.g., using a different local IP address. In

23

Chapter 2 Background and Related Work

Host A Host B

SYN

SYN-A
CK

ACK

(a) TCP handshake.

Address 1 Host B

SYN
(MP_CA

A)

SYN-ACK

(MP_CAPABLE, KeyB)

ACK
(MP_CAPABLE, KeyA, KeyB,Data Sequence Mapping)

SYN
(MP_JOIN, Nonce

A, AddressID
2)

Host A

Address 2

SYN-ACK

(MP_JOIN, NonceB,

A dr s 1

ACK(MP_JOIN, HMAC
A)

Primary

sub ow

Secondary

sub ow

(b) MPTCP handshake with primary and secondary subflow.

Figure 2.4: TCP and MPTCP handshakes.

Figure 2.4b, host A establishes a secondary subflow from IP address 2 by sending
a SYN with the MP_JOIN option. This option also contains a token generated
from KeyB, a nonce, and A’s own address ID. Note that MPTCP utilizes its own
address IDs instead of using the IP address from the IP header. The reason is that
the IP address in the header of a received packet may not be the same IP address
as originally set by the remote host. Rather, the address may be changed along the
path due to NAT. When host B replies with a SYN-ACK, it adds the MP_JOIN
option specifying its own nonce, address ID, and Hash-based Message Authentication
Code (HMAC). In the final ACK establishing the secondary subflow, host A sends
its own HMAC. To compute their HMACs, both hosts use KeyA and KeyB from
the handshake of the primary subflow and using both nonces from the handshake of
the secondary subflow. The benefits of the HMAC are threefold: They confirm that
the parties establishing the secondary subflow are the same as the parties involved in
establishing the primary subflow. They provide verification that a peer can receive
MPTCP segments at a new address before using it. Finally, the HMACs protect from
replay attacks for establishing the secondary subflow.

On each host, an entity called the path manager decides over which interface to
open the primary subflow, and whether and when to open secondary subflows. Once
multiple subflows are open, a scheduler decides how many bytes to send over each
subflow and whether to replicate any data over multiple subflows.

MPTCP is designed with several considerations in mind, as described by Raiciu
et al. [17]: Application compatibility, network compatibility, and fairness. To be
compatible with existing applications, MPTCP provides the same service as TCP:
It presents a reliable in-order bytestream to applications. Thus, applications do not
need to be aware of MPTCP. Rather, once MPTCP is supported by the OS, it can
be enabled for all applications which use TCP without requiring any modifications

24

2.2 Using Multiple Access Networks

to the applications. However, note that MPTCP is not yet available in all OSes. See
Section 2.3 for a discussion of multipath support on hosts in general and MPTCP
support in particular.

For compatibility with existing networks, MPTCP is designed as an extension to
TCP. One reason for this design decision is a change in the Internet architecture:
Traditionally, transport protocols such as TCP or MPTCP were implemented only
at communication endpoints, i.e., on hosts. Intermediate nodes within networks only
implemented protocols up until the network layer and were agnostic to transport
protocols. However, over time, actually deployed networks have deviated from this
traditional Internet architecture. In today’s Internet, middleboxes are aware of higher
layers than the network layer, e.g., the transport layer. For example, firewalls may
filter traffic based on ports within transport protocol headers. Middleboxes perfoming
NAT may change IP addresses as well as ports within an ongoing connection. Some
proxies do not just modify, but even terminate transport-layer connections. MPTCP
makes an effort to work with this reality of deployed networks. It attempts to increase
the chance to traverse middleboxes by resembling TCP as much as possible on the
wire. However, middleboxes on a path may still be incompatible with MPTCP, e.g.,
remove MPTCP options from the TCP header. In such cases, an MPTCP connection
falls back to using single-path TCP.

Finally, another design goal for MPTCP is fairness: On a bottleneck shared by mul-
tiple MPTCP subflows, the entire MPTCP connection should not take more capacity
than its fair share. This means that MPTCP should behave similar to a single-path
TCP flow at a shared bottleneck. MPTCP meets this requirement by using coupled
congestion control [36].

2.2.3.2 MPTCP Performance

The performance goals of MPTCP are to increase capacity and to improve resilience
to network failure. In order to assess whether MPTCP meets these goals, there are
several studies on MPTCP performance.

After designing MPTCP, Raiciu et al. [17] evaluate the performance of MPTCP over
WiFi and 3G networks for a benchmark of 100 emulated clients, which request files
of different sizes from a server. In their study, the authors observe a tradeoff between
small and large files due to the initial costs to set up an additional subflow: For files
smaller than 30 KB, MPTCP decreases performance due to the overhead of the second
subflow. For files larger than 100 KB, MPTCP consistently improves performance
compared to TCP.

Chen et al. [18] evaluate MPTCP performance over WiFi home networks and several
cellular providers. For small files, they find that using a single path over WiFi is best.
For larger files, cellular often performs better due to lower loss, and MPTCP is able
to successfully offload traffic. They do not observe a penalty for smaller files, as in
such cases, the subflow over the cellular network is not even established.

25

Chapter 2 Background and Related Work

In their study of WiFi and LTE performance, Deng et al. [2] measure MPTCP perfor-
mance compared to single-path TCP with primary subflows opened over either WiFi
or LTE. They find that MPTCP may penalize short flows and that selecting the
correct network for the primary subflow is critical. However, they observe that appli-
cations whose performance is dominated by long flows can gain from using MPTCP
if they pick the more suitable network for the primary subflow.

Han et al. [19] study Web performance using HTTP and SPDY, a precursor to Quick
UDP Internet Connection (QUIC) [37, 38], in a proxy-based setup over WiFi and
LTE. They find that MPTCP improves performance for SPDY in all cases and for
HTTP in most cases. Furthermore, they observe that Web performance is usually
dominated by the path with lower latency, in cases where multiple paths provide
similar bandwidth and loss.

Paasch et al. [39] design and implemented a framework to compare different MPTCP
schedulers. They compare the following schedulers: First, they consider Round-
Robin, which distributes data across all subflows, saturating each subflow by filling
its congestion window. Second, they look at Lowest-RTT-first, which sends data
over the subflow with the lowest estimated RTT first, filling its congestion window
and then proceeding to the subflow with the next higher RTT. Third, they examine
the Retransmission and Penalization scheduler, which aims to compensate for delay
difference and reduce head-of-line blocking by opportunistically replicating segments
over subflows with available capacity. Finally, they study the Bufferbloat Mitigation
scheduler, which limits the amount of data transmitted on each subflow to avoid
inflating RTTs. The authors find that the latter two schedulers show benefits in envi-
ronments with a high Bandwidth-Delay Product (BDP). Furthermore, they observe
that the lowest-RTT-first scheduler reduces latency for applications.

To improve MPTCP performance over paths with asymmetric conditions, Related
Work proposes several MPTCP schedulers: STMS [40] reduces burst transmission
for asymmetric paths such as WiFi and LTE. DEMS [41] decouples paths for chunk
delivery and leverages a small amount of redundancy on subflows. ECF [42] prevents
under-utilization of the lower RTT path by taking RTTs and congestion windows
on the connection level and on the subflow level into account. RAVEN [43] improves
RTT estimates by penalizing older samples and selectively leverages redundant trans-
missions on multiple paths. MP-DASH [44] schedules video segments according to
user preferences, segment size, and delivery deadline, with the aid of a video adapter
as an interface to the Adaptive Bit-Rate algorithm (ABR).

2.2.3.3 Other Multipath Protocols

An early example of a transport protocol which supports multihoming is Stream Con-
trol Transmission Protocol (SCTP) [45]. Similar to MPTCP, SCTP allows a single
connection to be associated with multiple local or remote IP addresses. However,
SCTP does not allow to aggregate capacity across access networks. Instead, it only

26

2.3 Systems Support

utilizes the primary path over one network and uses the secondary path over another
network as fallback.

To aggregate capacity for constant bit rate media streams, Singh et al. add multipath
support to the Real-Time Transport Protocol (RTP) [46]. The authors split constant
bit rate media streams across multiple paths based on path characteristics in order
to achieve higher bit rate and an increased robustness against disruptions.

Multi-Source Multipath HTTP (mHTTP) [47] distributes Web resource loads across
multiple TCP connections over different access networks and to different endpoints,
e.g., Content Delivery Network (CDN) nodes serving identical content. mHTTP uses
HTTP range requests to fetch chunks of a resource over different TCP connections
using HTTP/1.1. To reduce resource load time, a scheduler computes chunk sizes to
be fetched over each connection based on capacity estimates. The mHTTP prototype
implementation shows similar load time reductions as MPTCP for large resources,
but no benefits for small resources.

Multipath HTTP/2 (MP-H2) [48] further develops the idea of distributing individ-
ual resource loads across multiple access networks using HTTP range requests. As
the authors build on HTTP/2, they utilize HTTP/2 streams over the same TCP
connection instead of multiple TCP connections to load parts of a resource. More-
over, they design an advanced scheduler which bases its chunk size calculations on
capacity estimates as well as RTT. To gather RTT estimates, the authors lever-
age HTTP/2 features. Moreover, they dynamically adjust the byte range of chunks
during transmission using native HTTP/2 features. The MP-H2 prototype imple-
mentation shows better performance than mHTTP, but slightly worse performance
than MPTCP. However, like mHTTP, MP-H2 does not need server-sided deployment
or network support, so it overcomes deployment limitations of MPTCP.

Finally, there is the proposal of Multipath QUIC (MPQUIC) [49], which leverages a
QUIC extension to use different paths. In their performance evaluation, the authors
find that while MPQUIC performs similar to MPTCP when there is no packet loss,
it improves performance in lossy scenarios.

MPTCP and other multipath transport protocols are orthogonal to IANS: Combining
multiple access networks using MPTCP is yet another valid choice for IANS instead
of selecting a single access network. Furthermore, the access network selection algo-
rithms we propose can be used to optimize decisions within an MPTCP path manager
and/or scheduler.

2.3 Systems Support

While techniques to use multiple access networks can provide substantial performance
benefits, such techniques are not always deployed within current systems, e.g., OSes.
As most systems were originally designed without the use case of utilizing different
access networks in mind, such systems may need to be modified to support this use
case.

27

Chapter 2 Background and Related Work

Figure 2.5: Networking within a host.

We first provide background on how networking is implemented within hosts and
then examine to what extent OSes support using multiple access networks. As both
information available to OSes and information available to applications may play a
role in selecting the most suitable access network, we take a closer look at networking
APIs between OSes and applications.

2.3.1 Networking Within Hosts

Many hosts, including most end-user devices, are running an OS with a networking
implementation similar to Figure 2.5. While applications are implemented in user
space, most transport and network layer protocols are implemented in the kernel6.
Applications may also use user space libraries implementing protocols such as HTTP
or Transport Layer Security (TLS). The interface through which user space compo-
nents communicate with in-kernel protocol implementations is the Socket API. While
the Socket API originated as a POSIX standard to be used on UNIX-based OSes,
other OSes include similar APIs. For example, Windows include the Winsock2 API
which deviates from the Socket API only in a few cases7. The Socket API is im-
plemented in the Socket library, which can utilize the network stack implemented
in the kernel, i.e., protocols such as TCP, UDP, and IP. Finally, protocols on the
data link layer and physical layer are implemented within the hardware of the net-
work interface card or within network interface drivers. In addition to the Socket
API, most OSes enable user space applications to query information from in-kernel

6QUIC is a notable exception to this rule, as it is a transport protocol often implemented in user
space. However, QUIC is built on top of User Datagram Protocol (UDP), which is usually
implemented in the kernel.

7See Winsock documentation: https://docs.microsoft.com/en-us/windows/desktop/winsock/

porting-socket-applications-to-winsock.

28

https://docs.microsoft.com/en-us/windows/desktop/winsock/porting-socket-applications-to-winsock
https://docs.microsoft.com/en-us/windows/desktop/winsock/porting-socket-applications-to-winsock

2.3 Systems Support

protocol implementations or network interface drivers, e.g., via the Netlink API on
Linux.

To be able to communicate across a network using the TCP/IP stack implemented in
the OS kernel, an application first creates a socket as a communication endpoint, e.g.,
for a TCP connection or for UDP datagrams. Once created, the application can bind
the socket to a local IP address and/or port, thus, implicitly choosing the network
interface this address is configured on to use for this connection8. To establish a
TCP connection, the application connects the socket to a remote address and remote
port. To use UDP, the application may omit this step and directly send data to a
remote address and port. If there is no local address specified for the socket at this
point, the OS picks a local IP address, e.g., based on the default route in the local
forwarding table. Then, the application can send and receive data through the socket
similar to reading from and writing to a file with sequential access. Underneath, the
TCP/IP stack encapsulates payload, e.g., within UDP datagrams or TCP segments,
and further encapsulates these datagrams or segments within IP packets. The stack
then hands the packets to a network interface driver, which controls the network
hardware, e.g., a WiFi card, and eventually sends the packets over a network interface.
In the reverse direction, when the host receives packets, the network card hands them
to the network stack, which filters and decapsulates them. Finally, the stack forwards
the payload contained in the packets to the socket that belongs to the connection or
datagram endpoint, so the application can read the received data.

As an alternative to in-kernel implementations, protocols can also be implemented in
user space. One notable example of a transport protocol often implemented in user
space is QUIC, a new transport protocol built on top of UDP. A key advantage of im-
plementing QUIC in user space is the ability to deploy updates, e.g., of new versions
of the protocol, without having to issue a new release of the OS kernel. However,
user space protocol implementations may not be available through the Socket API,
but provide their own abstraction, i.e., networking API. As there is not yet a stan-
dard API for QUIC, current QUIC implementations are often tightly integrated into
applications that use them. Alternatively, some QUIC implementations provide a
“codec-style” API: Applications supply their payload as unencrypted plaintext to
the QUIC implementation, which then returns an encrypted QUIC packet for the
application to send over UDP, e.g., using the Socket API. Here, while QUIC is imple-
mented in user space, it utilizes the UDP implementation of the kernel. In contrast,
some user-space protocol implementations completely bypass the OS kernel and di-
rectly communicate with network interface drivers for performance reasons. Often,
the goal is to increase data rates for applications by speeding up packet processing.
Such user-space protocol implementations may use libraries such as the Data Plane
Development Kit (DPDK).

Mobile OSes, often running on mobile phones and tablets, slightly deviate from the
model in Figure 2.5 in two significant ways: First, there may not be direct access to

8This assumes that the system is configured with a routing policy to send traffic with a specific
source address over the corresponding access network.

29

Chapter 2 Background and Related Work

the network performance characteristics for all connected networks. While applica-
tions may be able to query WiFi network performance characteristics, information
about cellular networks may not be available in the same level of detail. The reason
is that mobile OSes often have only indirect access to the cellular modem, as the net-
work interface driver of the cellular modem is running on a different processor than
the OS: While the OS runs on one or multiple application processors, the code that
implements the radio stack for access to cellular networks runs on the baseband pro-
cessor. This code implements cellular protocols with functionalities such as network
registration, authentication, and mobility. Furthermore, the code running on the
baseband processor communicates with the SIM card as well as the cellular modem.
The OS running on the application processor can communicate with the code running
on the baseband processor, e.g., using asynchronous serial communication using AT
commands, and can, thus, still send data via cellular. However, as the OS kernel has
only indirect access to the cellular modem, it can only provide limited information
to user space. Second, mobile OSes may expose a different API than the Socket API
to applications, through which applications can open connections, communicate, and
query information about network performance characteristics.

2.3.2 Support For Multiple Access Networks Within Operating Systems

A host may have multiple network interfaces available, through which it can reach the
Internet. To make use of these multiple interfaces, the first step is for the host’s OS
to support multihoming. In this context, multihoming means that a host can have
different IP addresses configured on its interfaces and can use multiple interfaces to
communicate simultaneously. Most OSes support configuring one or multiple network
interfaces with one or multiple IPv4 and IPv6 addresses. Often, each interface can
have one IPv4 and multiple IPv6 addresses. For IPv6, the OS may perform source
address selection [50] between multiple addresses. However, IPv6 source address
selection is primarily concerned with reachability, and is usually neither aware of
different interfaces, access network performance over these interfaces, nor application
requirements.

If a host has multiple network interfaces with one or multiple IP addresses and if it
can reach a remote host via each of these interfaces, the host can usually establish
network connections to this host using multiple interfaces at the same time. For
instance, an established TCP connection is bound to a combination of local and re-
mote IP address. An application may explicitly bind different TCP connections to
different local IP addresses, e.g., using the bind() call in the Socket API. If these
IP addresses are configured on different access networks, the application uses multi-
ple access networks as a result. However, using multiple local IP addresses for the
same connection via MPTCP requires additional support from the OS. As MPTCP
implementations are typically tied to TCP implementations, which are usually im-
plemented in the kernel, MPTCP typically requires kernel support. This support is
not yet present in all OSes. Moreover, MPTCP has to be supported on both hosts
involved in the communication. While client-sided support may be present, e.g., in

30

2.3 Systems Support

major mobile OSes such as Apple iOS [51], server-sided support is still rare [52].
When MPTCP is supported, the OS can automatically enable MPTCP for all TCP
connections. As MPTCP has been designed to transparently substitute single-path
TCP, see Section 2.2.3.1, application support is not required. Here, the MPTCP path
manager, which is usually implemented in the OS kernel, chooses on which interfaces
to establish MPTCP subflows.

For protocols which do not support multiple paths, such as TCP, the OS may choose
between different local network interfaces, i.e., different access networks, within the
routing subsystem in the kernel. Here, some OSes choose a static default interface,
e.g., WiFi [15]. Alternatively, some mobile OSes implement a centralized connection
manager [15], which may enable cellular on a per-application basis.

As an alternative to letting the OS select an access network, an application can specify
a local IP address to use through the Socket API. By doing so, the application implic-
itly chooses to use the local network interface that this address is configured on, thus,
the access network that the interface is connected to. However, to select the most
suitable access network, an application may first have to gather information about
network performance characteristics, e.g., through the Netlink API. Whether an ap-
plication actually does this depends on the application: Some applications already
implement their own networking abstractions on top of the Socket API, e.g., to man-
age multiple connections, re-establish connections in case of disruptions, and choose
between IPv4 and IPv6. Such applications may implement access network selection in
the same connection management logic. Moreover, libraries implementing application
layer protocols, e.g., HTTP, may provide such functionality to applications9. How-
ever, such solutions on top of the Socket API are only available to applications that
implement their own connection management logic or use specific libraries that im-
plement this functionality. Therefore, per-application solutions do not represent OS
support for using multiple access networks. Moreover, per-application solutions come
with disadvantages, such as an increase in application complexity, code redundancy,
and the inability to optimize access network selection across multiple applications.
Similarly, libraries that utilize networking, such as TLS libraries, become more com-
plex if each such library has to implement access network selection.

As an alternative, access network selection can be implemented outside of the con-
text of an individual application, e.g., in the OS kernel. However, this makes it
more difficult to consider application needs: The OS is usually unable to distinguish
between connections with different requirements, as the Socket API does not allow
applications to provide such information. Annotating a connection with additional
information requires enhanced networking APIs.

There have been academic efforts to design networking APIs that provide additional
information regarding application needs. Early efforts include QSockets [53], which

9For example, the OkHttp library, see http://square.github.io/okhttp/, not only implements con-
nection management but also selects between multiple access networks depending on connection
establishment delay.

31

http://square.github.io/okhttp/

Chapter 2 Background and Related Work

allow an application to specify its Quality of Service (QoS) requirements on a per-
connection basis, with the goal to inform packet schedulers. For QSockets, selecting
between access networks is not yet a use case. Intentional networking [54] allows
applications to specify traffic properties for access network selection. Their API
provides a message abstraction with dependency information.

More recent efforts include NEAT [55], which provides a platform- and protocol-
independent API that includes access network selection. Protocol-independent means
that when using the NEAT API, instead of selecting a specific transport protocol,
applications only provide the transport services they require. The NEAT system then
selects a transport protocol as well as a path over one of the locally available access
networks. Hereby, NEAT can optimize choices of protocol and path. The advantage
of NEAT is that it can potentially use transport protocols unknown to the application
developer without any application modification. NEAT is related to standardization
efforts in the IETF TAPS Working Group. TAPS is in the process of standardizing a
new transport API [56], which supports selecting between different transport proto-
cols, remote endpoint IP addresses, and locally available access networks. The work
described in this thesis has served as input to the TAPS API, similar to NEAT.

To overcome the limitations of the Socket API in practice, some mobile OSes ex-
pose more advanced networking APIs10. These APIs enable applications to query
information about network interfaces, enable them to select a network with certain
capabilities11, or facilitate failover if network connectivity is lost on a particular in-
terface.

Our work extends existing efforts to make multiple access networks available. We
propose to dynamically select between multiple access networks based on both ap-
plication needs and network performance characteristics. Our solution requires ap-
plications to use a new networking API, but does not require support from OSes,
networks, or remote hosts.

10For example, Android exposes the Connectivity Manager API, see https://developer.android.com/

reference/android/net/ConnectivityManager#requestnetwork, and Apple exposes the NWConnec-
tion API, see https://developer.apple.com/documentation/network/nwconnection. The NWCon-
nection API is an implementation of the TAPS API.

11For example, on Android, possible network capabilities include: Not metered, not congested, not
restricted, not roaming, not VPN, and multipath preferences, i.e., whether to use a secondary
network interface as fallback or whether to use multiple network interfaces in parallel.

32

https://developer.android.com/reference/android/net/ConnectivityManager#requestnetwork
https://developer.android.com/reference/android/net/ConnectivityManager#requestnetwork
https://developer.apple.com/documentation/network/nwconnection

3
Assessing Application Performance

One major objective of Informed Access Network Selection (IANS) is to improve
application performance. Yet, to assess whether this objective is achieved, we have
to be able to assess application performance.

In this thesis, we focus on two major applications: Web browsing and HTTP Adaptive
Streaming (HAS). Measuring Web performance in a manner that the results are both
realistic and reliable is not straight-forward. Thus, we first provide an overview of
different performance metrics relevant for Web browsing. Then, we conduct an in-
depth analysis of Web performance measurement and outline what pitfalls to avoid.
Finally, we discuss several performance metrics for video streaming using HAS.

3.1 Web Browsing

Since Web browsing is one of the most prevalent applications in today’s Internet,
understanding its performance is critical. Hereby, both metrics as well as experiments
have to realistically reflect possible performance improvements as experienced by
actual users. Moreover, they need to be reproducible. However, quantifying Web
performance is challenging due to Web page diversity, heterogeneous end-user device
types and browsers, choice of metrics, including network-centric, browser-centric, and
user-centric metrics, and the lack of well-established standards. Given this diversity,
we first provide an overview of several Web performance metrics. We, then, check
these metrics regarding their data sources and tools.

3.1.1 Performance Metrics Definitions and Data Sources

Most often, Web performance is quantified in terms of load times measured during
the page load process. Other fundamental aspects of a page load are the number and
the sizes of resources that are transferred, which are often used to compute integral
metrics such as Byte Index. Here, we provide definitions for these metrics, and data
sources from which they can be derived.

33

Chapter 3 Assessing Application Performance

onLoad

navigationStart fetchStart loadEventStart (PLT)responseStart (TTFB)

DNS TCP TLS HTTP

...

HTTP

Request Response

DNS

Query Answer

TCP

Handshake

TLS

Handshake

Processing

HTTP 3xx (Redirect)

HTTP

Request Response

DNS

Query Answer

TCP

Handshake

TLS

Handshake

Processing

HTTP 200 (with base page)

 Load

resources: DNS TCP TLS HTTP

DNS TCP TLS HTTP

Figure 3.1: Browser events and timings.

3.1.1.1 Load Times

To understand the different load time metrics for Web pages, it is useful to revisit
the page load process: To load a Web page, a browser usually loads the base docu-
ment, parses it, constructs a Document Object Model (DOM), loads the referenced
resources, processes them, and displays the results. Figure 3.1 shows a detailed view
of this process including browser events, which are the basis of several commonly
used load times metrics.

Typically, Page Load Time (PLT) is defined as the time until the onLoad event. How-
ever, in the eye of the user, the actual Web page load is often finished earlier, e.g.,
when the content is displayed on the screen. Thus, other timings include domCon-
tentLoaded, when all resources referenced in the base document have been loaded,
Time To First Paint (TTFP), when the first content is rendered, or Above-The-Fold
time (ATF), when the part of the page visible on the user’s screen has been fully
rendered. Depending on the Uniform Resource Locator (URL) being retrieved, load
times may include initial redirects.

Load times are available from different data sources. For instance, load times based
on browser navigation events are available through the standardized Navigation Tim-
ings Application Programming Interface (API)1. Moreover, TTFP is currently being
standardized2. Being standardized implies that these metrics are available for differ-
ent browsers based on a similar definition. HTTP Archive (HAR) files3 also include
PLT and domContentLoaded times. Different from Navigation Timings-based load
times and TTFP, ATF is not standardized. Estimating ATF requires not only load
times but also positions of the resources within the Web page [57]. Resource load
times are available through the Resource Timings API4 or from HAR files. Resource
positions within the Web page and dimensions are available, e.g., using jQuery, a
JavaScript library to traverse and query the DOM.

1See Navigation Timings specification version 1: https://www.w3.org/TR/navigation-timing/ and
version 2: https://www.w3.org/TR/navigation-timing-2/.

2See Paint Timings specification: https://www.w3.org/TR/paint-timing/.
3See HAR specification draft: https://w3c.github.io/web-performance/specs/HAR/Overview.html.
4See Resource Timings specification version 1: https://www.w3.org/TR/resource-timing-1/ and ver-

sion 2: https://www.w3.org/TR/resource-timing-2/.

34

https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing-2/
https://www.w3.org/TR/paint-timing/
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://www.w3.org/TR/resource-timing-1/
https://www.w3.org/TR/resource- timing-2/

3.1 Web Browsing

3.1.1.2 Resource Count and Size

To better understand the complexity of Web pages and the page load process, it is
useful to consider the resource count and the sizes of the resources which are part of
the page.

For an accurate resource count, it is important to note that contemporary Web
pages often fetch resources continuously even after the initial page load has com-
pleted. Thus, resource count should only include those resources loaded until the
onLoad event. Possible definitions include the number of HyperText Transfer Pro-
tocol (HTTP) request-response pairs observed during the page load or the number
of resources in the DOM. With regards to resource size, networking-related studies
usually use the encoded size, i.e., the number of bytes transferred over the network, as
opposed to the decoded size, i.e., the number of bytes after decompression. However,
as resources are transferred over HTTP, each resource transfer implies an overhead,
namely the HTTP headers. Unfortunately, it is often unclear if a given resource
size definition includes the header or not. The total page size is the sum of all re-
source sizes. Byte Index is the integral of sizes of resources loaded over time, see [58].
Consequently, it relies on the accuracy of resource sizes and resource counts.

As data sources, one way to derive resource count is to count the number of HTTP
request-response pairs using the list of entries in a HAR file. Another list of resources
involved in constructing a Web page is reported by the Resource Timings API. HAR
files as well as Resource Timings version 2 provide encoded and decoded body size
of each resource. In addition, HAR files contain HTTP headers, possibly including a
Content-Length header, and header sizes. Note that for HTTP/2, logged header sizes
do not correspond to bytes on the wire anymore due to HTTP/2 header compression.
Resource Timings also include the transfer sizes of header and body. An alternative
is to extract the number of resources from a packet capture trace if it is possible
to successfully decrypt all packets. However, exact resource sizes can be off due to
Transport Layer Security (TLS) padding.

3.1.2 How To Reliably Measure Web Metrics

As Web performance measurement and comparison relies on the accuracy of metrics
such as load times and resource count and sizes, we need to check their accuracy. To
do so, we compare different data sources for the same page load.

We find that initial redirects can substantially inflate load times. Moreover, some
data sources provide more reliable resource sizes and resource counts than others.
Consequently, Byte Index can differ based on the data source used to compute it.

3.1.2.1 Web Metrics Comparison Methodology

To assess the impact of data sources and tools on Web performance metrics, we
measure these metrics from different data sources for the same page load.

35

Chapter 3 Assessing Application Performance

0 20 40 60 80 100

0.
0

0.
4

0.
8

Redirect Time / Load Time [%]

EC
D

F
PLT
domContentLoaded
TTFP
TTFB

(a) Nav. Timings: Redirect share of load time
HTTP 301 or 302 before first 200

0

100

200

300

400

0 1 2 3 4 5 6 7 8

Alexa 1000
Alexa 10001−11000

(b) HAR: Number of redirects

Figure 3.2: Effects of initial redirects.

We load pages from a Thinkpad L450 with Debian Stretch, using the following tools:
1.) Firefox 61.0.2 with Selenium 3.14.0 and geckodriver 0.21.0, 2.) Firefox 61.0.2
with Marionette, and 3.) Chrome 69 with Chrome DevTools. For realistic browser
behavior, which includes the rendering engine, we open Web browsers including the
graphical user interface rather than in headless mode. To avoid bandwidth limita-
tions, our vantage point is directly connected to a university network. To minimize
the effects of Domain Name System (DNS) caching and delay to the resolver, instead
of popular open resolvers, we use a DNS recursive resolver close to our vantage point
in terms of network distance.

Since the most commonly used workload is the Alexa top list, despite its limita-
tions [59], we also use a snapshot of the global Alexa Top 1000 and the Alexa 10001
to 11000. To generate our hitlist, we query the Alexa Top 1000 on 18. September
2018 and the Alexa Top 1 Million, from which we derive the Alexa 10001-11000, on
30. September 2018. We then repeatedly access each page 10 times with the dif-
ferent tools. This ensures that all experiments for a single page are done within a
reasonable time window. Overall, we execute our Web metrics experiments between
18. September and 11. October 2018. For each page, we first initialize a new browser
profile with a cold browser cache. We then fetch the page and wait for it to load
by instructing the browser automation tool to wait for the onLoad event. As data
sources, we export Navigation Timings, Resource Timings, TTFP, and the HAR file
using the native HAR export of the browser via har-export-trigger 0.6.1. In parallel,
we also run a packet capture to derive the baseline of our validation. If one of the data
sources does not yield any data, we log an error and exclude the page load attempt
from the data set.

3.1.2.2 Redirects

In the first step of our metrics comparison, we take a closer look at load times and
notice the influence of initial redirects. As shown in Figure 3.1, initial redirects
are included in load times, if they occur. However, whether including redirects is
realistic depends on the measurement objective: Timings excluding redirects may
be more representative of page loads by actual users due to browser optimizations.
For example, redirects do not occur in practice if the user types the first few letters

36

3.1 Web Browsing

and then clicks on a URL suggested by the browser. Similarly, some browsers prevent
redirects by automatically using HTTPS due to HSTS or by adding “www” to domain
names the user types5. In contrast, load times including redirects are representative
of page loads if a user types in the full URL and presses Enter. Therefore, a conscious
choice should be made and the URL hitlist should be adjusted accordingly.

To assess the impact of redirects we first count the number of server-sided redirects6

for both the Alexa 1000 and 10000-11000, see Figure 3.2b. The most common cause
for a redirect is that a page is not available over unencrypted HTTP and, thus, the
browser is redirected to the HTTPS version. Given that many pages have migrated
to HTTPS, e.g., 75% of Web pages loaded by Firefox users7 in September 2018, this
is not surprising. Other reasons for redirects include pointers to subdomains, e.g.,
for localized versions of the content based on geolocation. Often both occur and
lead to two redirects. Next, we revisit page load times: For Navigation Timings,
redirect times are the time between navigationStart and fetchStart. For HAR files,
we use the time from the start of the page load until the first HTTP 200 response.
To quantify the contribution of redirect times to the overall load times, we show,
in Figure 3.2a, the relative percentage of load times of redirects for all Web pages.
Redirects account for 6.1% of PLT for 50% of the pages and for 23% of PLT for
10% of pages. This implies that the PLT with or without redirects differs by this
amount. The difference is even larger for user-centric load time metrics as these are
usually shorter. For instance, TTFP differs by 19.1% for 50% of pages and by 47%
for 10% of pages. Indeed, the time for the redirects is about the same as the Time To
First Byte after the redirect for about 50% of pages. The reason is that most redirects
typically involve an additional DNS resolution, Transmission Control Protocol (TCP)
connection establishment, TLS handshake, and HTTP request. At the time of this
experiment, in September and early October 2018, TLS 1.3 was still not deployed,
which causes our redirects to include one additional round trip. In summary, we
make the following observations: 1.) Redirects account for a significant share of PLT
and a substantial share of user-centric load time metrics such as TTFP. 2.) Studies
should make a conscious choice to in- or exclude redirects. For example, load times
including redirects reflect load times for the first visit to a Web page after typing the
domain name into the browser address bar, while excluding redirects more accurately
reflect loads times for returning users and including browser optimizations.

It is possible to exclude redirects upfront, e.g., by adjusting the hitlist to post-redirect
URLs. However, post-redirect URLs may change, e.g., due to geolocation or HTTPS
migration. Such changes may lead to more page load failures, compared to starting
from the “base” URLs of http:// and the top-level domain name. Alternatively,
redirects can be excluded in retrospect by computing the timings relative to fetchStart
instead of navigationStart for Navigation Timings resp. relative to the start time of
the first HTTP 200 resources for HAR files. In our measurements evaluating access

5See, e.g., https://support.mozilla.org/en-US/kb/search-web-address-bar.
6Server-sided redirects use HTTP status 301 or 302. Client-side redirects use status 200 and contain

the redirection URL in the response content, which we do not log.
7See https://letsencrypt.org/stats/#percent-pageloads.

37

https://support.mozilla.org/en-US/kb/search-web-address-bar
https://letsencrypt.org/stats/#percent-pageloads

Chapter 3 Assessing Application Performance

network selection, see Chapter 8, we choose to exclude redirects by adjusting the
hitlist.

3.1.2.3 Resource Count and Size

Next, we take a closer look at resource sizes. In particular, we explore if different
data sources are consistent with the baseline from the the packet capture trace and
if they yield similar results.

To validate the resource sizes recorded by the different data sources, see Section 3.1.1.2,
we compare them against a baseline computed from the packet capture trace. This,
unfortunately, is only possible for resources loaded over unencrypted HTTP/1.0 or
HTTP/1.1. If TLS is used, resource sizes may be incorrect due to padding. For com-
puting the baseline, we extract HTTP request and response pairs from the packet
capture trace and exclude resources with missing bytes. For the remaining resources,
we separate the TCP payload into the HTTP header and body to count bytes sep-
arately. Finally, we match the resource to the corresponding HAR and Resource
Timing (Res) data based on timestamps. Hereby, we exclude ambiguous cases, i.e.,
where multiple HAR entries match a resource from the trace. The resulting com-
parison is summarized in Table 3.1. If the Content-Length header is present, its
information is mostly consistent with the traces. None of the other data sources is
that good. Rather, we find that the accuracy varies widely across data sources and
browsers. When manually investigating the most significant mismatches, we find that
Resource Timings set resource size to 0 for most cross-origin resources8, even though
a nonzero amount of bytes was transferred. In HAR files, the body size is often set
to -1 if the browser does not succeed in loading a resource. In several cases, Firefox
counts too many bytes in case of redirects. Apparently, Firefox returns the size of the
redirect destination instead of the actual resource size of the redirect. This is most
likely a bug in Firefox.

Next, we explore the consistency of the results for all resources including those that
are transferred over an encrypted connection. Figure 3.3 shows the resource size
differences for the same resource and various data source combinations, i.e., HAR
file body size (HAR), Content-Length header taken from HAR file, and Resource
Timings encoded body size (Res). Since Content-Length is a close approximation to
the baseline for unencrypted resources, we use it as a baseline. Res provides the exact
same resource size as Content-Length in only 42.5% of cases for Firefox and in 43.4%
of cases for Chrome. This is consistent with the results for unencrypted resources,
see Table 3.1. For HAR, Firefox provides a resource size which matches the Content-
Length for 91.3% of cases, see Figure 3.3a. Thus, we conclude that HAR’s accuracy is
better than for unencrypted resources. In contrast, Chrome provides a resource size
which matches the Content-Length in only 39.4% of cases for all resources. When

8Unless the “Timing-Allow-Origin” header is set, see Resource Timings version 2 specification:
https://www.w3.org/TR/resource-timing-2/

38

https://www.w3.org/TR/resource-timing-2/

3.1 Web Browsing

Table 3.1: Object sizes: Accuracies for unencrypted resources.
Comparison Browser Match Counted too many bytes Counted too few bytes

Cases
[%]

Cases
[%]

99th
quantile
[KB]

Max
[KB]

Cases
[%]

99th
quantile
[KB]

Max
[KB]

Content-
Length

Firefox 100 0 0 0 0 0 6.8
Chrome 100 0 0 0 0 0 0

HAR body
size

Firefox 10 72.6 13.4 66.28 2170 14 0.13 852.4
Chrome 91.9 0.5 0 303.4 7.6 0.3 2925

Res body
size

Firefox 39.6 0.8 0 2910 59.6 196.6 5092
Chrome 46 0.5 0 276.5 53.5 181.5 5092

0.
0

0.
4

0.
8

10 100 10000 1000000
Absolute Difference [Bytes]

EC
D

F

HAR − Content−Length
Res − Content−Length
Res − HAR

(a) Firefox

0.
0

0.
4

0.
8

10 100 10000 1000000
Absolute Difference [Bytes]

EC
D

F

HAR − Content−Length
Res − Content−Length
Res − HAR

(b) Chrome

Figure 3.3: Resource sizes: Differences due to data source for all resources.

investigating the difference, we find that Chrome sets HAR body and header size to
-1 for all HTTP/2 resources9. This is most likely a bug in Chrome.

From this, we conclude: 1.) Content-Length provides the most accurate resource size
but is not always available. For example, HTTP servers may not set Content-Length
for dynamically generated resources which are transfered using chunked encoding.
2.) Resource Timings are an unreliable data source for resource sizes, as they do
not provide sizes for cross-origin resources, except when explicitly allowed. 3.) HAR
body size is inaccurate for a significant number of resources, due to bugs in both
Firefox and Chrome (whereby Firefox is more accurate than Chrome).

Amazingly, we find that not only resource sizes differ by data sources but also resource
counts (for the same page load)! For the Alexa 1000 dataset, resource counts from
HAR and Res always differ by at least one resource and by 7 or more resources
for 50% of cases. For 10% of the cases, they are off by more than 67 resources.
Numbers for Alexa 10000 are similar. Among the main contributor to this difference
is that Resource Timings do not include resources loaded within commonly embedded

9In Firefox, only resources transferred using HTTP/2 Server Push lack body size and timings.
10In HAR files, Firefox logs body size including headers, contradicting the HAR

specification at https://w3c.github.io/web-performance/specs/HAR/Overview.html. See
https://dxr.mozilla.org/mozilla-central/source/devtoools/server/actors/network-monitor/

network-response-listener.js#428, accessed 28.09.2018, for the relevant source code. Thus, we
subtract header size from all resource sizes.

39

https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://dxr.mozilla.org/mozilla-central/source/devtoo ols/server/actors/network-monitor/network-response-listener.js#428
https://dxr.mozilla.org/mozilla-central/source/devtoo ols/server/actors/network-monitor/network-response-listener.js#428

Chapter 3 Assessing Application Performance

Table 3.2: Further Web performance pitfalls.
Pitfall Description Guidelines

Failed page
loads

For some URLs in our workload, the browser
never invokes the onLoad event. The most
common reasons are no DNS response, not be-
ing able to establish a TCP connection, or cer-
tificate errors.

Exclude URLs which do not point to
Web pages.

Data
source
availability

Data sources do not export any data in some
cases, e.g., no HAR file, no Resource Timings,
or neither. Furthermore, Chrome often ex-
ported data too early in our experiments, i.e.,
before the onLoad event.

Carefully choose browser and automa-
tion tools. In our experiments we
find that Firefox instrumented by Mar-
ionette is more likely to provide com-
plete data than Firefox with Selenium
or Chrome.

Outdated
tools

Major Web browsers have update cycles
shorter than a typical research project. Thus,
tools quickly become out-of-date.

Consciously address the trade-off of
updating: Software updates may fix
bugs and provide performance opti-
mizations. However, they may also in-
troduce compatibility issues.

Unrelated
traffic

Modern Web browsers often load data unre-
lated to page loads, e.g., software updates or
blocklists. This traffic can cause significant
performance overhead

Disable features which result in un-
wanted traffic.

New proto-
cols

Newly introduced protocols relevant to Web,
such as HTTP/2 or Quick UDP Internet Con-
nection (QUIC), can invalidate prior assump-
tions about Web traffic. Moreover, they may
require updates to the measurement and eval-
uation setup or trigger so far unknown bugs in
the evaluation.

Revisit assumptions once new proto-
cols are introduced.

HTML Inline Frames (iframes). Rather, these resources are recorded in the Resource
Timeline for the iframe.

Again, we conclude that Resource Timings are an unreliable data source for resource
counts as well as resource sizes. By specification, they do not include resources of
embedded frames and often do not provide sizes for cross-origin resources. These
observations inform our measurement methodology, see Section 8.1, in the following
way: Our resource counts and sizes are based on Content-Length in cases where it is
available. In other cases, we use HAR body size as logged by Firefox.

3.1.2.4 Impact on Byte Index

To illustrate the consequences of using inaccurate data sources for resource counts
and sizes, next, we quantify the impact of resource size and count differences on Byte
Index [58]. Byte Index captures page load progress, i.e., loaded bytes over time. In
Figure 3.4, we plot the relative difference between Byte Index for the same page load,
calculated from HAR body sizes, Resource Timings body sizes, and Content-Length
header (using HAR body size if the Content-Length header is missing). For Firefox,
see Figure 3.4a, Byte Index is almost identical for Content-Length and HAR body
size. However, Byte Index differs by 17.1% for Res in 50% of the pages loads, and
by 56.4% for 10%. For Chrome, see Figure 3.4b, the Byte Index derived from both

40

3.2 Video Streaming

0 20 40 60 80 100

0.
0

0.
4

0.
8

Relative Byte Index Difference [%]

EC
D

F

HAR − Content Length
Res − Content Length
Res − HAR

(a) Firefox

0 20 40 60 80 100

0.
0

0.
4

0.
8

Relative Byte Index Difference [%]

EC
D

F

HAR − Content−Length
Res − Content−Length
Res − HAR

(b) Chrome

Figure 3.4: Byte Index: Difference due to data source.

Res and HAR differs substantially from the Byte Index derived from the Content-
Length.

Thus, we conclude that computing Byte Index from Resource Timings leads to results
that are quite inaccurate. As we use more reliable data sources in our evaluation,
see Section 8.1, we are confident that the Byte Index we compute more accurately
reflects the actual page load process.

We summarize further pitfalls, as well as our guidelines, in Table 3.2. See our PAM
paper [60] for details. To help others to avoid these pitfalls, we make our Web
measurement tools publicly available11.

3.2 Video Streaming

In addition to Web browsing, we evaluate the performance of another major ap-
plication: Video streaming. Video streaming has multiple use cases, including live
streaming and video on demand, and uses different technologies, e.g., Real-Time
Transport Protocol (RTP), WebRTC, and HTTP Adaptive Streaming (HAS). We fo-
cus on HAS because it can adapt dynamically to network conditions. As, with IANS,
we can provide the best possible network conditions by selecting the most suitable
access network, we see a high potential for IANS to improve HAS performance.

First, we provide an overview of HAS. Then, we describe the performance metrics
which are relevant for HAS and the potential impact of these metrics on Quality of
Experience (QoE).

3.2.1 Overview

HAS provides a way to continuously transfer media content over HTTP. Using HTTP
allows HAS to host content on Web servers instead of having to deploy dedicated
server software. Moreover, HAS can leverage features such as HTTP caching and
11
https://github.com/theri/web-measurement-tools

41

https://github.com/theri/web-measurement-tools

Chapter 3 Assessing Application Performance

Content Delivery Networks (CDNs). HAS was standardized as Dynamic Adaptive
Streaming over HTTP (DASH) [61].

HAS enables to deliver media content such as video or audio. Each media content
component is called an Adaptation Set. With HAS, the media content delivered to a
client adapts to a number of factors, such as the end-user device type, screen resolution
and the available network conditions, e.g., the available downstream capacity. To
achieve this, each Adaptation Set may contain different representations of the same
media content, e.g., the same video encoded for different quality levels, which results
in different bitrates. The HAS client can now request the representation that best
matches the available resources, such as the downstream capacity.

For media content to be available as an Adaptation Set for HAS, the content first has
to be divided into segments of a certain length. Each segment now contains a part
of the video content, which is encoded using a video or audio codec. Encoding seg-
ments of the same content with different quality levels, screen resolutions, or codecs,
results in different representations of the content. Each segment is then stored on
a Web server and can be loaded by HAS clients using HTTP. To find out which
representations exist for a specific content, a client first loads a manifest file, e.g., a
Media Presentation Description (MPD) file in DASH. This MPD file includes a list
of representations, their resolutions and bitrates, as well as the URLs of the initial
segments. For each representation, the initial segment includes the URLs of the ac-
tual segments containing the content. Moreover, the MPD file contains information
about the codec, total duration, and suggested minimum buffer level before starting
playback.

MPD files, initial segments, and segments containing Adaptation Sets are hosted on
Web servers. To start loading content, a HAS client, such as a video player, first
loads the corresponding MPD file. From this file, the client learns the necessary
information to start loading the initial segments for each representation. The client
now chooses the initial representation for the first segment, loads this segment and
decodes the content into the playout buffer. With enough content in the playout
buffer, e.g., based on the suggested minimum buffer level in the MPD file or local
configuration, the client starts playing the content to the user. At the same time, the
client continuously loads more segments. After each segment, the client can adapt
to the available downstream capacity by switching to a different representation, as
each new segment is loaded using a new HTTP request. The algorithm to switch
representations after each segment is called Adaptive Bit-Rate algorithm (ABR). For
example, the ABR may decide to load the next segments with a higher quality if
there is sufficient downstream capacity available or it may load the next segment
with a lower quality level if the available downstream capacity has decreased. If the
client fails to load the segment fast enough, so the buffer runs out, the media playout
freezes, which we call stalling. To avoid stalling while still providing the best possible
video quality, ABRs typically utilize information such as an estimate of the recent
download rate and/or the current status of the media playout buffer. Which ABR to
use is not standardized in HAS, and each client can choose its own algorithm.

42

3.2 Video Streaming

A survey of these ABRs is out of scope for this thesis, but can be found in [62]. In
our evaluation for IANS, we use the following ABRs:

• Buffer Based Approach (BBA) [63]: BBA determines the next representa-
tion to be loaded based on the current buffer level. BBA-0 starts with the lowest
representation and keeps loading this representation as long as the buffer level
is low. If the buffer level is high, it switches to a higher representation based on
a linear function of the buffer level. Variants of this algorithm, such as BBA-1
and BBA-2, account for variable segment sizes and optimize the start phase of
the playout: BBA-1 handles segments encoded with variable bit rate (VBR),
which vary in size even for the same representation. BBA-2 allows to switch
to a higher representation faster at the start of the video playout depending on
segment download time.

• Buffer Occupancy based Lyapunov Algorithm (BOLA) [64]: Similar to
BBA, BOLA determines the next representation based on the current buffer
level. Hereby, it computes a function based on the buffer level using a utility
maximization function, which aims to minimize stalling and maximize video
quality. The function includes a parameter to set the relative importance of
stalling to video quality.

When selecting the most suitable network using IANS, our goal is to provide the HAS
client and its ABR with the best possible network conditions in order to improve HAS
performance.

3.2.2 Measuring Video Streaming Performance

As we aim to improve HAS performance using IANS, we measure its performance
using the following metrics:

• Initial playout delay: The time between starting to load the video and start-
ing the actual playback of the media content to the user. This delay depends on
how much content the client buffers before starting the playout. When deciding
how much to buffer, a client has to balance initial playout delay with the risk of
stalling events during playout. While the manifest file may contain a suggestion
on how much to buffer, ultimately, the client decides when to start playing out
the media content.

• Number of stalling events: The number of times when the client has to stop
the playback because insufficient content is buffered.

• Durations of stalling events: How long playout stops during stalling events.

• Video quality: The representation, e.g., the resolution and bit rate, of the
media being played out to the user.

43

Chapter 3 Assessing Application Performance

• Number of representation switching events: The number of times that
the client’s ABR switches between representations. For example, switching to a
lower representation may prevent stalling, and switching to a higher represen-
tation may improve video quality. Additionally, it is possible to switch between
representations encoded with different codecs.

• Amplitudes of representation switches: The number of representations by
which the client switches down or up in each switching event.

In contrast to Web browsing, for HAS, there is no common standardized API through
which different video players are supposed to provide these metrics with a common
definition. Instead, each video player has to implement its own logic to measure these
metrics.

Different performance metrics have a varying impact on QoE. Seufert et al. [65] find
that the number of stalling events is the most significant factor. The durations of
stalling events also have an impact, but fewer stalling events with longer durations
have a lower impact on QoE than more stalling events with shorter durations. In the
absence of stalling, representation switching events with high amplitudes have the
highest impact on QoE, in particular if the new representation corresponds to a low
video quality. The number of representation switching events does not affect QoE as
much, but, still, for a high QoE, representation switching events should not be too
frequent, e.g., not occur more often than every 2 seconds.

Building on these findings, the ITU-T model P.1203 [66, 67] estimates QoE from
the measured performance metrics. Seufert et al. [68] further study the impact of
the HAS performance metrics on the P.1203 model. Due to its capability to distill
multiple performance metrics into a single number which eases comparison, we later
use the P.1203 model in our evaluation, see Section 8.1, to determine whether our
IANS policy improves HAS performance.

44

4
Expressing Application Needs Using

Socket Intents

Informed Access Network Selection (IANS) not only depends on the network perfor-
mance but also on the application needs: Different kinds of application traffic benefit
from different network performance characteristics. Applications have different pref-
erences and requirements as to what constitutes “good network performance” in their
particular context. While applications are likely to know what to optimize for, it is
inconvenient to perform access network selection within each application: Having to
observe current network performance and select a network to use introduces com-
plexity and overhead, as each new application has to replicate the effort of other
applications. To avoid reimplementing access network selection within each appli-
cation, we propose to use a separate component, an access network selection policy,
which performs access network selection on behalf of all applications. The access
network selection policy is realized as a separate piece of software running in user
space. See Section 6.1 for a more detailed discussion of access network selection poli-
cies. However, there is the question of how this access network selection policy should
learn about application needs. To enable applications to express their needs regarding
access network selection, we introduced the concept of Socket Intents [69] and refined
it within an Internet Draft in the Internet Engineering Task Force (IETF) [70].

Socket Intents are hints about what the application knows, expects, or wants to
achieve regarding its own traffic. By expressing its Intents, an application can share
its knowledge about its own communication patterns and express preferences regard-

New connection

(with Socket Intents)

Report network

characteristics Select network for new

connection or transfer

New transfer

(with Socket Intents)

Figure 4.1: Access network selection using Socket Intents.

45

Chapter 4 Expressing Application Needs Using Socket Intents

ing performance. For example, an application can specify its Intents for each new
connection or for each individual transfer, see Figure 4.1, to an access network selec-
tion policy. An individual transfer can be, for example, each resource that a browser
loads as part of a Web page, or individual segments for adaptive video streaming.
Then, the access network selection policy decides which network to use, whereby it
can base its decision on Intents and network performance characteristics. If an access
network selection policy optimizes its decisions based on Socket Intents and current
network performance characteristics, see Chapter 5, we call it an IANS policy. Fi-
nally, the connection or transfer is placed on the selected network. As the presence
of traffic enables gathering more accurate network performance characteristics, IANS
policies represent a control loop.

As application needs differ, applications can specify different Intents to provide input
to IANS policies. Table 4.1 provides a list of currently defined Intents. An application
can opportunistically set the Intents that it knows about or the Intents that it deems
useful out of those that it knows. In contrast to Quality of Service (QoS), Intents
do not represent hard requirements or resource reservations. They are considered in
a best-effort manner. Still, it is possible to set Differentiated Services Code Point
(DSCP) values [71] based on Intents. However, Intents cannot provide guarantees
for the application. Rather, Intents help to use the available resources in the most
efficient way from the point of view of the application. To do so, Intents provide
guidance in cases where there are trade-offs, e.g., when choosing between a short
latency and a high downstream capacity network.

Applications have an incentive to specify their Intents as accurately as possible to take
advantage of the most suitable resources. For example, if an application indicates a
preference for short latency by setting the Traffic Category Intent to Query,
an IANS policy should prioritize shorter latency in its choice of networks. If an
application then sends traffic that does not match its Intents, such as bulk traffic
which may benefit from networks with high downstream capacity more than from
those with short latency, the application hurts its own performance. Furthermore,
a system implementing access network selection knows about the available network
resources and about the Intents expressed by different applications trying to use
these resources. Thus, the system can balance different requirements and penalize
misbehaving applications.

Given that the knowledge actually available to applications may depend on the type of
application and its context, different Intents are available, see Table 4.1. Intents range
from abstract to concrete. Applications can, thus, choose how much detail to specify.
For example, an application can just indicate its generic Traffic Category: When
downloading a large file, an application can set the Traffic Category Bulk for a
particular connection, which may lead to choosing a network with higher downstream
capacity. When sending small queries, an application can set the Traffic Category
Query, hoping that a network with short latency will be selected.

Alternatively, an application can be more specific about how much it prioritizes la-
tency using the Timeliness Intent: This Intent uses loosely defined terms, such as

46

Interactive or Background, that indicate a qualitative assessment of latency re-
quirements without having to quantify them. The goal of these terms is to enable
application developers to intuitively assess how much each connection or transfer pri-
oritizes latency, compared to other criteria such as Cost Preference. For example,
if the file to be accessed is a system update which is not time critical, the application
can set the Timeliness to Background. This may lead to selecting a network
which does not have the shortest latency, but also does not incur any additional
performance penalties or other costs. Note that if an application tries to prioritize
multiple Intents, e.g., both Timeliness and Cost Preference, there may not be
an obvious correct choice for the IANS policy. For such cases, IANS policies should
include defaults or tiebreaker rules. However, specifying a prioritization using In-
tents may also help the IANS policy to further balance this traffic with other traffic
by other applications. For example, a video call application can set its Timeliness to
Interactive and its Disruption Resilience to Sensitive. For this application,
an access network with short latency and high consistency can be chosen, which is
unlikely to be disrupted.

Some applications may possess a priori knowledge about a new connection, such as
Bitrate Received or Size to be Received, e.g., due to configuration or meta-
data. In this way, an IANS policy can distribute small and large transfers according to
their latency and downstream capacity requirements, e.g., by estimating load times.
Within video streaming, the application can set the Bitrate Received of the se-
lected representation or the maximum allowed Duration for the next video segment,
i.e., the current buffer level. Using this information, the IANS policy can select a net-
work which provides sufficient downstream capacity to load the video segment within
the allowed duration.

Intents can also serve as input for optimization of other features than access network
selection, e.g., for configuring transport protocols: If the Timeliness is set to In-
teractive, it may make sense to disable TCP’s Nagle algorithm. If the Timeliness
is set to Background, it may make sense to choose a scavenger congestion control
algorithm. If a Bitrate Sent is provided, this information can be used to de-peak
the data rate.

We implement Socket Intents in the APIs of the Socket Intents prototype, see Sec-
tion 7.1. Our goal is to evaluate the benefit of IANS for application performance.
Therefore, we focus on Socket Intents which enable sophisticated IANS policies to im-
prove the performance of a single application. For Web browsing, we use the Size to
be Received for individual resources within a Web page load, see Section 6.3. For
HAS, we use the Traffic Category, the Duration, and the Bitrate Received
for individual video segments, see Section 6.4.

47

Chapter 4 Expressing Application Needs Using Socket Intents

Table 4.1: Socket Intents Definitions.
Intent Type Value Definition

Traffic Category Query Presumably short requests and responses.
Optimize for short latency.

Control Presumably long, but low-volume flow.
Optimize for short latency.

Stream Steady data rate traffic over time.
Optimize for low variation.

Bulk Transfer of a single file.
Optimize for high capacity.

Timeliness Stream Real-Time media. Keep delay and packet
delay variation as low as possible.

Interactive Keep delay low, but some packet delay
variation is tolerable.

Transfer Keep delay and packet delay variation low,
but they are not critical.

Background Delay and packet delay variation are not
a concern.

Disruption Sensitive Connection loss means application failure.
Resilience Recoverable Connection loss is inconvenient, but the

application can recover from it.
Resilient Connection loss is not a concern for the

application.

Cost Preference No Expense Prohibit using a network that incurs mon-
etary cost.

Optimize Avoid using a network that incurs mon-
etary cost, potentially at the expense of
performance.

Balance Use a network that incurs monetary cost
if it is expected to provide a performance
benefit.

Ignore Monetary cost is not a concern.

Energy Efficiency Optimize Use a network that incurs low energy con-
sumption overhead.

Ignore Energy consumption overhead is not a
concern.

Size to be Received numeric Bytes the application expects to receive.
Size to be Sent numeric Bytes the application expects to send.
Duration numeric Maximum allowed time for a transfer.
Bitrate Sent numeric Bytes per second the application expects

to send.
Bitrate Received numeric Bytes per second the application expects

to receive.

48

5
Network Performance Characteristics for

Informed Access Network Selection

When making an informed choice between multiple access networks, an end-user de-
vice should consider both application needs as well as current network performance
characteristics. Yet, network performance characteristics can vary across access net-
works as well as over time, see Section 2.1. Therefore, to make an informed choice
between different access networks, we require accurate and up to date estimates of
the network performance characteristics of the access networks that an end-user de-
vice is connected to. However, measuring such network performance characteristics
is non-trivial, as they are not necessarily readily available on end-user devices and
can be highly volatile.

First, we explore what network performance characteristics we would ideally wish to
know to inform Informed Access Network Selection (IANS). As these desired network
performance characteristics are not available in practice, we approximate them based
on network performance characteristics that are available on a host. We then present
what network performance characteristics we collect and how we aggregate them to
approximate our desired network performance characteristics.

5.1 Desired Network Performance Characteristics

We consider a multiple access network scenario, in which an end-user device can
communicate with a remote host via different access networks, recall Section 2.2.1.
These access networks may vary in network performance characteristics such as la-
tency, available downstream capacity, or loss, as underlined by Related Work, see
Section 2.1.3.

When selecting an access network for a new connection or transfer, i.e., a flow, our
objective is to choose the network with the “best” performance. Ideally, for each
potential choice of access network, we would like to possess a priori knowledge about
the network performance that the flow would experience if we selected this network. In
particular, we would like to know the following network performance characteristics:

• Latency: We consider end-to-end latency as the time between sending a packet
on one host and receiving the same packet on another host. We are interested

49

Chapter 5 Network Performance Characteristics for Informed Access Network
Selection

in latency because it directly influences user-visible delays within applications.
For example, latency often has a significant impact on connection establish-
ment delay or on the completion time of a data transfer. Latency has several
components, including transmission and propagation delays on each link on the
path between the hosts, and processing and queueing delays on each node be-
tween the hosts. If the delays added by one node or link on a path dominate
end-to-end latency, this component is the latency bottleneck of the path.

• Latency variation: As different packets experience different latencies, we
consider the variation of the latencies of different packets exchanged between
the same hosts. We are interested in latency variation as it can be an indicator
of congestion on the path that the packets traverse. One possible cause for an
increase in latency variation is an increase in queueing delay for some packets
before being sent on the bottleneck link.

• Capacity: We consider the upstream capacity as the maximum number of
bytes per second that can be transmitted end-to-end between two hosts within
a flow over a specific path. Furthermore, downstream capacity is the maximum
number of bytes that can be received from another host within a flow over a
specific path. We are interested in downstream capacity because it may have a
high impact on the completion times of a data transfer. Available end-to-end
capacity depends on the capacity bottleneck, i.e., the link on the path through
which the lowest number of bytes per second can be transmitted. In access
networks, this bottleneck may be located on the wireless link, e.g., the first hop
of a WiFi or cellular network. Its capacity limitation may be related to low
Received Signal Strength (RSS), which may impact the available modulation
scheme, and, thus, the data rate, see Section 2.1.1.1. Furthermore, the available
capacity on a link depends on the amount of cross-traffic, i.e., the number of
bytes per second being sent by other hosts across a common link.

• Loss: We consider loss as the percentage of packets sent by a host which are
not received by the remote host, e.g., due to being dropped on the path. We
are interested in packet loss as it can have a high influence on the completion
time of a data transfer, i.e., if part of the data has to be retransmitted. For
example, end-to-end packet loss may occur when an end-user device repeatedly
fails to decode a received signal on a wireless link1 or when a node along the
path drops a packet from its queue.

We show an example of these network performance characteristics in Figure 5.1. Here,
an end-user device has the choice between WiFi and cellular to communicate with
a remote host, as the end-user device can reach the remote host with via both net-
works. More specifically, between the end-user device and the remote host, there is a
path via WiFi (green) and a path via cellular (blue). Thus, in principle, the end-user
device can send the flow, which consists of packets p1, p2, and p3, via either network,
thus, via either path. Yet, if the end-user device selects WiFi, the packets will experi-
ence latencies accordingly, i.e., latencyWiFi1 , latencyWiFi2 , and latencyWiFi3 . If the

1This assumes that lower layer retransmission on the wireless link itself has failed.

50

5.1 Desired Network Performance Characteristics

Local Area
Network

ISP
network

Uplink Internet

WiFi
Access Point

ISP network
(backbone)

Gateway
Gateway

Cell

Base
station

End-user
device remote

host

p3

p1

p2

p1

p2

p3

latency
WiFi1

latency
WiFi2

latency
WiFi3

latency variationWiFi

lossWiFi

capacityWiFi

p1

p3

p2owcell

latency
cell1

latency
cell2

latency
cell3

latency variationcell

losscell

capacitycell

owWiFi

p1

p3

p2

If we select WiFi:

If we select cellular:

Figure 5.1: Network performance characteristics: Desired.

end-user device selects cellular for the flow, the packets experience different latencies,
i.e., latencycell1 , latencycell2 , and latencycell3 . Here, each latency is the delay between
the end-user device sending a packet and the remote host receiving the packet, e.g.,
between sending p1 at the end-user device and receiving p1 at the remote host over
either the path via WiFi (latencyWiFi1) or the path via cellular (latencycell1). As la-
tencies may vary for different packets, these latencies result in latency variationWiFi

or latency variationcell. For example, in Figure 5.1, the latency variationWiFi is
the variance between latencyWiFi1 , latencyWiFi2 , and latencyWiFi3 as experienced
by packets p1, p2, and p3. Moreover, both paths have limited capacity of how many
bytes per second can be transmitted from end-user device to remote host and vice
versa. For example, in Figure 5.1, the capacitycell in the upstream direction is the
maximum number of bytes that the end-user device can send to the remote host over
cellular as flowcell within one second, such that the data is received by the remote
host. The capacityWiFi in the downstream direction is the maximum number of bytes
that can be transmitted from the remote host to the end-user device over the path
via WiFi. Moreover, the entire flow, flowWiFi or flowcellular is subject to packet loss,
lossWiFi or losscell. For example, in Figure 5.1, the losscell in the upstream direction
is the difference between packets sent by the end-user device and packets received by
the remote host (i.e., the number of packets that were sent but not received) divided
by the number of packets sent by the end-user device.

These network performance characteristics may vary between WiFi and cellular if the
performance bottleneck is within the access network or on a link that is not shared
between the path via WiFi and the path via cellular. In contrast, if the bottleneck
is in the core or on a shared link, network performance characteristics between WiFi
and cellular may be similar.

Note that the path between end-user device and remote host may change during the
duration of a flow. Therefore, end-to-end network performance characteristics may
vary across packets for reasons unrelated to access network performance.

In addition, there are other path properties which can impact performance. Such
path properties include the presence of middleboxes on the path, such as Network

51

Chapter 5 Network Performance Characteristics for Informed Access Network
Selection

Local Area
Network

ISP
network

Uplink Internet

WiFi
Access Point

ISP network
(backbone)

Gateway
Gateway

Cell

Base
station

End-user
device remote

host

connection1: SRTT
1

SRTT
2

SRTT variation
1

...

number of bytes sentWiFi

number of bytes receivedWiFi

retransmissions
1

retransmissions
2

Received Signal StrengthWiFi

Modulation RateWiFi

Channel utilizationWiFi

Current tra c on WiFi:

Current tra c on cellular:

connection2:

connection3:

...

number of bytes sentcell

number of bytes receivedcell

connection4:

WiFi interface:

WiFi driver:

Cellular
interface:

SRTT variation
2

SRTT
3

SRTT
4

SRTT variation
3

retransmissions
3

retransmissions
4

SRTT variation
4

Figure 5.2: Network performance characteristics: Available in practice.

Address Translation (NAT), proxies, or firewalls. Moreover, such middleboxes may
influence whether the capacity of an access network can be bundled with another,
e.g., whether an Multipath TCP (MPTCP) subflow can be established over this path.
Such path properties, which indirectly influence network performance across paths,
are considered in our Internet-Draft [72], but are out of scope for this thesis.

Note that while we focus on network performance characteristics, other characteristics
can be relevant for access network selection as well. For example, if an end-user device
is limited by a data volume quota on cellular, but has no such restrictions on WiFi, a
user may deem this more important than performance. We include such differences,
e.g., expressed as the Cost Preference Socket Intent, see Chapter 4. However,
detecting network characteristics such as data volume quotas is out of scope for this
thesis.

5.2 Network Performance Characteristics Collected in
Practice

Ideally, we would like to have a priori knowledge about the network performance
characteristics that each access network would provide for a new flow. Since such
knowledge is not available in practice, we estimate future network performance char-
acteristics based on current traffic [73].

We focus on passive measurements, i.e., by observing existing traffic, as opposed to
active measurements, i.e., sending probing traffic, for the following reasons: First, we
want to minimize overhead. Second, we want to avoid increasing congestion on the
bottleneck. Third, we do not want to use up a user’s data volume quota, e.g., on
cellular networks. Moreover, existing traffic may reflect network performance char-
acteristics for future traffic more reliably, as this traffic is relevant to applications.

To illustrate what network performance characteristics we can observe on a host,
Figure 5.2, again, shows the multiple access network scenario. There are two Trans-

52

5.2 Network Performance Characteristics Collected in Practice

mission Control Protocol (TCP) connections2 established over each path between
the end-user device and the remote host, e.g., connection1 and connection2 over
WiFi (blue) as well as connection3 and connection4 over cellular (green). For each
of these connections, the end-user device can access the following Smoothed Round
Trip Times (SRTTs) from its TCP stack: SRTT1 for connection1 and SRTT2 for
connection2 for the connections via WiFi as well as SRTT3 for connection3 and
SRTT4 for connection4 via cellular. From the TCP stack, the end-user device also
has access to SRTT variations, e.g., SRTTvariation1 for connection1, and retrans-
missions counts, e.g., retransmissions1 for connection1. In addition to informa-
tion about current connections, the end-user device can query its network inter-
faces to find out the number of bytes sentWiFi and number of bytes sentcell, as
well as the number of bytes receivedWiFi and number of bytes receivedcell. For
WiFi, we can also query the WiFi driver for physical layer network performance
characteristics such as Received Signal StrengthWiFi, Modulation RateWiFi, and
Channel utilizationWiFi. Such physical network performance characteristics are not
always available for cellular, as cellular modems may not reveal such information.

Note that, the available network performance characteristics are influenced by current
traffic patterns, e.g., the amount of data and the number of connections currently
present on the network. While SRTTs and retransmission counts are related to current
connections, both data rates and physical layer network performance characteristics
are based on all traffic seen on the end-user device. Note that focusing on existing
traffic implies that we only get network performance characteristics for networks we
use, i.e., on which any traffic is seen. To limit computational overhead, instead of
updating our estimates for every packet that is sent or received, we record the current
estimates every n seconds. The choice of the sampling period n represents a trade-off
between updating estimates more often, but with higher computational overhead for
short n and updating estimates less often, but with lower overhead for long n.

We gather network performance characteristics of the existing traffic and use them
to estimate the following desired network performance characteristics:

• Round Trip Time (RTT): One-way end-to-end latency is difficult to mea-
sure, e.g., due to clock synchronization issues. Therefore, we estimate one-way
latency using Round Trip Time (RTT), i.e., two-way latency. RTT is the time
between sending a packet and receiving the corresponding acknowledgment or
response. For TCP connections, SRTT samples are readily available from the
TCP stack. For other reliable transport protocols, such as QUIC, SRTT samples
may be available as well, depending on the implementation and the provided
interface. If the latency bottleneck is located within the access network, all
connections over a specific access network traverse this bottleneck. In this case,
we can aggregate SRTT samples for all connections on the same access network
and treat the resulting aggregated SRTT values as estimates for the two-way
latency to be expected over this access network. If the bottleneck link is not

2For Quick UDP Internet Connection (QUIC), similar performance estimates are available to the
protocol implementation, but there is not yet any readily available programming interface to
query such estimates from the protocol implementation.

53

Chapter 5 Network Performance Characteristics for Informed Access Network
Selection

within the access network, then SRTTs may vary greatly among connections to
different destinations. In this case, we still can aggregate SRTTs per destination
address or subnet.

We aggregate RTTs in the following ways:

– Minimum RTT (RTTmin): As a lower bound of the expected RTT, we
compute the minimum of all SRTTs of connections for a particular network.
For example, in Figure 5.2, the minimum RTT for WiFi is the minimum
of SRTT1 and SRTT2. We collect the minimum RTT as an estimate for a
lower bound of the two-way latency, i.e., excluding additional latency due
to potentially transient effects within the network such as queueing delay.

– Median RTT (RTTmedian): As a typical value of the expected RTT, we
compute the median of all SRTTs of connections for a particular network.
For example, in Figure 5.2, the median RTT for WiFi is the median of
SRTT1 and SRTT2. We collect the median RTT as an estimate for the
expected two-way latency that a flow would experience, including poten-
tially transient effects within the network.

• RTT Variation: Since we estimate latency using SRTTs, we estimate latency
variation using SRTT variations. Similar to SRTT samples, SRTT variations
within each TCP connection are available from the TCP stack. For each con-
nection, the SRTT variation represents the variation of the SRTTs of this con-
nection over time.

We aggregate RTT variations in the following ways:

– Variation within connections (RTTvarwithin): We consider the SRTT
variances over time for all current TCP connections over the same access
network as our metrics for variation and calculate the median. A high
variance within many or all connections can indicate congestion, as those
connections may experience an increase in queueing delay at the bottle-
neck. For example, in Figure 5.2, the median variance within connections
for WiFi is the median of SRTTvariation1 and SRTTvariation2.

– Variation among connections (RTTvaramong): We consider the cur-
rent SRTT values for all TCP connections over the same access network
and calculate their variance. A high variation among connections can ei-
ther indicate congestion that impacts some connections, or performance
bottlenecks which are not traversed by all connections. For example, in
Figure 5.2, the variation among connections for WiFi is the variance of
SRTT1 and SRTT2.

• Data rate: To estimate the available capacity, we observe the current data rate
sent and received on each access network via the number of sent and received
bytes. To get the number of sent and received bytes, the end-user device can
query the network interface counters for the interfaces connected to each access

54

5.2 Network Performance Characteristics Collected in Practice

network periodically, i.e., every n seconds. For the current data rate, we com-
pute the difference between successively read counters and divide the difference
by the time between readings. If all traffic across an access network shares the
same bottleneck, e.g., if the bottleneck is within the access network, then the
data rate is representative of the capacity that the traffic currently utilizes.

We aggregate data rates to compute the following capacity estimates:

– Current data rate (DRatecur): We observe the most recent data rate.
For example, in Figure 5.2, the current upstream data rate for WiFi is
the difference between the current sample of number of bytes sentWiFi

and the previous sample of number of bytes sentWiFi read n seconds ago,
divided by the sampling period n.

– Maximum data rate (DRatemax): We store the maximum of all through-
put data rates observed over a certain time period. In our current setup,
we have observed that a time window of 5 minutes provides adequate es-
timates. For example, in Figure 5.2, the maximum upstream data rate for
WiFi is the maximum of all upstream data rates within the last 5 minutes.

– Number of concurrent connections (conns): We observe the number
of currently established TCP connections over the same access network as
an estimate for how many connections might share the same bottleneck
in the worst case. For example, in Figure 5.2, the number of concurrent
connections for WiFi is 2, because there are two connections.

– Free capacity (cfree): To estimate the current free capacity, we assume
that a new connection or transfer will get a fair share of the maximum
capacity. Therefore, we divide maximum capacity by number of concurrent
connections. To account for idle connections or connections that do not
use their fair share of the capacity due to slow start or being application-
limited, we weight the number of connections by the currently utilized
capacity.

• Packet Loss: Similar to one-way latency, packet loss is not directly observable
on hosts. However, protocols that provide reliable transport, e.g., TCP, Stream
Control Transmission Protocol (SCTP), and QUIC keep track of which data
was actually received by the other end to retransmit lost data. Therefore, this
information can be used to infer packet loss for connections that use these
protocols. In contrast, as unreliable protocols like User Datagram Protocol
(UDP) do not keep track of whether packets were received, we cannot use UDP
flows to estimate packet loss.

In the scope of this work, we consider estimating packet loss in the upstream di-
rection. To do so, we query the counter of segments that the TCP stack deemed
lost for each connection and divide this number by the total number of segments
sent3. For example, in Figure 5.2, the upstream packet loss on connection1 is

3For Linux, the number of lost segments is available within struct tcp_info as tcpi_lost since Linux
3.16, while the total number of segments sent is available as data_segs_out from Linux 4.6.

55

Chapter 5 Network Performance Characteristics for Informed Access Network
Selection

the number of retransmissions1 divided by the number of packets sent on the
connection. Note that these loss counters are only estimates, as there is no indi-
cation whether retransmits are caused by link errors, congestion, or re-ordering.

In the downstream direction, estimating packet loss is often not possible, as
TCP implementations usually do not keep track of lost and re-ordered bytes
on the receiver side. Even if they did, with TCP we could only estimate the
amount of lost and re-ordered bytes, but have no certainty about how many
packets were lost4. To complicate matters further, distinguishing between lost
and re-ordered bytes/packets is only possible in retrospect. For instance, in
case a packet arrives out-of-order, but within one RTT, it can be considered
re-ordered. If it arrives later, it can be a considered being a retransmission of a
lost packet. Due to these limitations, we currently do not consider packet loss
estimates in our access network selection.

• Wireless characteristics: As the physical layer characteristics of a wireless
link may directly influence latency or capacity on the wireless link, i.e., the
first hop of the path, we gather such network performance characteristics in
addition to the above latency and capacity estimates. For WiFi, physical layer
network performance characteristics are often readily available from the network
interface driver, while for cellular, they may not be available.

We gather the following network performance characteristics for WiFi:

– Signal strength: The RSS with which the last data frame was received.

– Modulation rate: The modulation scheme which the driver used to send
the most recently sent data frame, and the modulation which was used for
the most recently received frame.

– Channel utilization: The percentage of airtime during which the driver
sensed the channel free. Channel utilization is communicated by WiFi
Access Points (APs) within QBSS information elements in 802.11 probe
response and beacon frames.

Note that the gathered network performance characteristics are most useful to es-
timate performance for paths to remote hosts that the end-user device is already
communicating with. For other remote hosts, estimates may initially be less repre-
sentative, but become more accurate as the end-user device starts considering traffic
to the new host in its estimates as well.

Moreover, paths to different remote hosts may have different performance bottle-
necks, e.g., due to congestion on a link in the backbone to one remote host, whereby
the same link is not traversed by the path to the other remote host. We may recog-
nize such differences based on high latency variations among connections to different

4As QUIC implements loss recovery based on packets instead of byte streams, we could estimate
upstream packet loss for QUIC if packet loss counts were made available by the protocol imple-
mentation. Therefore, both QUIC packet loss and TCP segment loss can serve as estimates for
packet loss.

56

5.2 Network Performance Characteristics Collected in Practice

remote hosts. In such cases, to get more accurate estimates, we may aggregate net-
work performance characteristics per remote host or per destination subnet instead
of aggregating them for all connections.

We implement collecting these network performance characteristics in the Socket In-
tents prototype, see Section 7.3. To see whether the gathered network performance
characteristics reflect the network conditions in our evaluation, we perform a feasi-
bility study in a testbed, see Section 8.5.

57

6
Access Network Selection Policies

Based on application needs expressed as Socket Intents and network performance
characteristics we design access network selection policies. An access network selec-
tion policy selects which access network to use for each new connection or transfer.
Hereby, it may choose a single access network or combine the available access networks
using Multipath TCP (MPTCP). If an access network selection policy optimizes its
decision based on Socket Intents as well as current network performance characteris-
tics, we refer to it as an Informed Access Network Selection (IANS) policy.

In this section, we first explain the fundamental design of our access network selection
policies and, then, cover different IANS policies. Hereby, we first present rule-based
IANS policies which match application needs to suitable networks. Then, we present
the Threshold Policy, which is designed specifically for Web browsing. Finally,
we introduce the Optimist Policy, the Pessimist Policy, and the Selective
MPTCP Policy, which are designed for HTTP Adaptive Streaming (HAS).

6.1 Policy Design

Access network selection policies are entities that decide which access network to use
for each new connection or transfer. Hereby, access network selection policies can be
informed via Socket Intents, recall Chapter 4, and estimates of the current network
performance characteristics, see Chapter 5. For details of how we implement these
inputs, see Chapter 7.

An access network selection policy makes its decision based on input from the appli-
cation and produces an output, see Figure 6.1. As input, an application specifies its
Socket Intents either for a new connection (A) or for a new transfer (B). In addition
to the Socket Intents, the access network selection policy learns the domain name
of the remote host that the application wants to communicate with and the remote
port. In the case where an application specifies its Socket Intents for a new transfer
(B), the access network selection policy also knows about any existing connections to
the remote host which may be available for reuse. Therefore, it can take into account
the overhead of opening a new connection and penalize access networks on which
this would be necessary accordingly. In addition to application needs, the access
network selection policy has access to estimates of the current network performance
characteristics for each access network, see Section 5.2.

59

Chapter 6 Access Network Selection Policies

Input from application (A):

New connection

Domain name of remote host

Remote port

Socket Intents

Input from networks:

Performance characteristics

Minimum SRTT

Median SRTT

Maximum data rate

Current data rate

Number of concurrent connections

Median SRTT variation within connections

SRTT variation among connections

Policy Output (A):

Local IP address for new connection

Socket options to set

Remote IP address(es) to connect to

Input from application (B):

New transfer

Domain name of remote host

Remote port

Socket Intents

Connections available for reuse

Policy Output (B):

Local IP address of chosen network

Socket options

Remote IP address(es)

Connection(s) to reuse (if available)

Figure 6.1: Policy model.

To choose an access network for a new connection (A), the access network selection
policy returns a local IP address for this connection. Hereby, the IP address belongs
to the network interface through which the end-user device can use the chosen access
network. Thus, the connection will be established via this network. The access
network selection policy can also combine all available access networks using MPTCP
by suggesting to set the corresponding socket option for the new connection. In this
case, the chosen access network is used for the primary subflow. Then, the MPTCP
implementation may establish additional subflows over other access networks without
any further interaction with the access network selection policy1. Finally, the access
network selection policy has to resolve the domain name, rather than relying on
the application to do so, because Domain Name System (DNS) resolution depends
on access network selection: The same domain name may resolve to different IP
addresses for different access networks, e.g., if different Content Delivery Network
(CDN) nodes serving the same content are “closer” to the end-user device on each
access network. Therefore, the access network selection policy resolves the domain
name over the selected access network and then returns the resolved IP addresses.
While this prevents the use of a remote IP address optimized for a different access

1Note that, within the context of our work, we designed an access network selection policy which
explicitly interacts with an MPTCP path manager [74]. However, such interactions are out of
scope for this thesis.

60

6.2 Rule-based IANS policies

network, it also limits caching DNS responses on the end-user device by splitting the
cache.

When choosing an access network for a new transfer (B), the access network selection
policy may return one or multiple existing connections using the chosen access net-
work to reuse. It also returns the information necessary to open a new connection,
similar to (A), for cases in which there are no existing connections available for reuse
on the chosen access network or if connection reuse fails. For example, reuse may fail
if the remote host has terminated the connection, which an implementation can find
out by probing, e.g., using Transmission Control Protocol (TCP) keepalives. In such
cases, an application may establish a new connection with the same parameters, i.e.,
the same local and remote IP address as well as socket options, using the information
provided by the access network selection policy.

While per-connection interaction with the access network selection policy (A) may
be sufficient for applications whose Intents remain the same during the lifetime of a
connection, other applications may need to interact with the access network selection
policy more frequently, i.e., for each transfer (B). For example, for Web browsing,
each transfer corresponds to a request for a Web resource and different Web resources
may have different Intents, e.g., Size to be Received. Here, instead of selecting an
access network for the entire connection to a Web server and then placing all transfers
to this Web server on the connection, it is necessary to select an access network for
each transfer.

Access network selection policies may use simplistic default configurations or they
may optimize their decisions informed by Socket Intents and network performance
characteristics, in which case we refer to them as IANS policies. IANS policies may (a)
match traffic to networks using rules, or (b) perform complex computations to predict
performance2. For rule-based IANS policies, an application specifies what network
performance characteristics to optimize for, e.g., short latency or high downstream
capacity. Then, the IANS policy selects a network with the desired network perfor-
mance characteristics. For Web browsing, rule-based IANS policies are not sufficient
because the application does not possess a priori knowledge of whether to optimize
each transfer for short latency or high downstream capacity. Instead, the application
can set the properties of each transfer, e.g., the Size to be Received. Based on
these properties, IANS policies can compute what network performance characteris-
tics to optimize a transfer for. For HAS, while most transfers are capacity-bound,
IANS policies benefit from additional knowledge such as the Bitrate Received and
the Duration.

6.2 Rule-based IANS policies

To match application traffic, i.e., a new connection or a new transfer, to the most
suitable access network, an IANS policy is aware of of Socket Intents and network per-

2Other options, such as random choices, are out of scope for this thesis.

61

Chapter 6 Access Network Selection Policies

formance characteristics. Based on this information, the IANS policy can implement
its decision logic to match Socket Intents to network performance characteristics.
If such IANS policies match Socket Intents based on a set of rules, they are called
rule-based IANS policies. We see the primary use case of rule-based IANS policies
as distributing the traffic of different applications across different access networks.
Hereby, each application specifies its needs through Socket Intents to take advantage
of the most suitable access network for its communication, whereby the IANS policy
is able to optimize its decisions across multiple applications. Rule-based IANS poli-
cies can select an access network for each new connection or for each new transfer.
Selecting a network for each new transfer implies opening multiple connections and
distributing transfers across them.

Rule-based IANS policies can apply one or multiple rules matching Socket Intents to
an access network with specific network performance characteristics. For example,
one or multiple applications may specify the Traffic Category Intent for each new
connection or transfer. The Traffic Category implicitly expresses what network
performance characteristics to optimize for when selecting an access network, e.g.,
low latency or high downstream capacity. Here, a rule-based IANS policy can apply
the following rules to select an access network:

• If the Traffic Category is set to Query or Control, select the access
network with the shortest latency.

• If the Traffic Category is set to Stream, select the access network with
the lowest latency variation.

• If the Traffic Category is set to Bulk, select the access network with the
highest available downstream capacity.

Alternatively, an application may specify both the Timeliness Intent and the Cost
Preference Intent. While the Timeliness indicates whether the application prior-
itizes short latency and latency variation, the Cost Preference indicates how to
balance application needs regarding good performance and low monetary cost. Here,
a rule-based IANS policy can apply the following rules to select an access network:

• If the Timeliness is set to Background or the Cost Preference to No
Expense: Select the network that does not incur any additional monetary cost
(i.e., use a network without metered data plan).

• If the Timeliness is set to Transfer:

– If the Cost Preference is set to Optimize or to Balance: Select the
network that does not incur any additional monetary cost.

– If the Cost Preference is set to Ignore: Select the network with the
shortest latency, even if using this network incurs additional monetary
cost.

• If the Timeliness is set to Stream:

– If the Cost Preference is set to Optimize or to Balance: Select the
network with the shortest latency only if it provides a performance benefit.

62

6.3 Threshold Policy for Web Browsing

– If the Cost Preference is set to Ignore: Select the network with the
shortest latency, even if using this network incurs additional monetary
cost.

As another example, an application may specify the Bitrate Received Intent for
a new connection. Here, a rule-based IANS policy can select an access network
with a current downstream capacity that is above the Bitrate Received Intent.
If multiple access networks fulfill this requirement, the rule-based IANS policy may
decide among these networks based on “tiebreaker” rules, e.g., based on Energy
Efficiency or short latency. Moreover, the rule-based IANS policy can specify a
default access network to be selected in cases in which an application does not specify
any Socket Intents or in case the specified Socket Intents do not match any rule.

6.3 Threshold Policy for Web Browsing

To improve the performance of Web browsing using IANS, we design the Threshold
Policy to distribute resource loads of a Web page across access networks. The goal
of this IANS policy is to shorten the load times of individual resources and, thus,
to shorten the overall load time for the page. To achieve short load times for each
resource, the Threshold Policy considers resource sizes based on the Size to be
Received Socket Intent. In addition to the Size to be Received, the Threshold
Policy takes current network performance characteristics into account, i.e., latency
and downstream capacity on each network. Depending on the size of a resource, the
Threshold Policy optimizes for different network performance characteristics: For
loading small resources, whose load times are often latency-bound, it prefers access
networks with short latency. For large resources, whose load times are dominated by
downstream capacity, it prefers access networks that provide high downstream ca-
pacity. We name this IANS Policy the Threshold Policy based on the threshold
resource size below which latency dominates and above which downstream capacity
dominates. Note that, while designed for the use case of Web browsing, the Thresh-
old Policy can be used for any application that sets the Size to be Received for
each transfer.

6.3.1 Threshold Policy Algorithm in Detail

For each individual resource, the Threshold Policy selects the most suitable access
network, i.e., the network with the shortest expected load time. First, we describe
the fundamental decision algorithm. Then, we provide further details on the latency
and capacity calculations in Section 6.3.2 and on the resource load time estimation
in Section 6.3.3.

The fundamental decision algorithm of the Threshold Policy is shown in Algo-
rithm 6.1. First, based on the Size to be Received given as size, the Threshold

63

Chapter 6 Access Network Selection Policies

Algorithm 6.1: Threshold Policy decision algorithm.
Input: Transfer with size, useTLS,
Networks n ∈ N with RTTminn , RTTmediann , reusen, DRatemaxn , DRatecurn ,
connsn
Output: Network to use for transfer

1 netshort ← network with shortest RTTmin
// Compute load time components due to latency and capacity

2 tlatency ← getLatencyPart (RTTminshort , reuseshort, useTLS) // See Alg. 6.2

3 tcapacity ← getCapacityPart (DRatemaxshort , DRatecurshort , connsshort, size)
4 if tlatency > tcapacity then // Latency-bound

5 return netshort
6 else // Capacity-bound

7 foreach network n ∈ N do
8 cfreen ←getCapacity (DRatemaxn , DRatecurn , connsn) // See Alg. 6.2

9 tload ←predictLoadTime (RTTminn , reusen, useTLS, cfreen , size)
// See Alg. 6.3

10 return network with shortest tload

Policy determines whether this resource is small enough that its load time is domi-
nated by latency, or whether the resource exceeds this threshold, so that its load time
is dominated by downstream capacity.

If the resource load is dominated by latency, the resource should be loaded on the
network with the shortest latency. Therefore, the Threshold Policy initially fo-
cuses on the network with the current shortest RTTmin, netshort. Here, we use RTTmin
rather than RTTmedian because it estimates a lower bound of the two-way latency to
the remote host while being less impacted by current traffic. Based on the resource
size and the current network performance characteristics on the shortest latency net-
work netshort, the Threshold Policy calculates a latency part and a capacity part
of resource load time, see Section 6.3.2 for details.

If the latency part exceeds the capacity part, the resource load is latency bound
and the Threshold Policy chooses netshort due to short latency. If the capacity
part exceeds the latency part, the Threshold Policy predicts the load time of the
resource for all available access networks, see Section 6.3.3 for details. Finally, the
Threshold Policy chooses the network with the shortest predicted load time.

6.3.2 Latency and Capacity Computations

To determine the threshold of whether a resource load is latency bound or capacity-
bound, the Threshold Policy computes a latency part and a capacity part. The
latency part estimates the delay to initiate the resource transfer, e.g., connection setup
delay, see Function getLatencyPart shown in Algorithm 6.2. This delay depends on
whether a new connection has to be established or whether an existing connection
to the same remote host can be reused to load the resource, i.e., reuse. If a new

64

6.3 Threshold Policy for Web Browsing

Algorithm 6.2: Latency and capacity computations.
1 Function getLatencyPart (RTT, reuse, useTLS):
2 if reuse then
3 tlatency ← RTT
4 else if useTLS then
5 tlatency ← 4 · RTT
6 else
7 tlatency ← 2 · RTT
8 return tlatency

9 Function getCapacityPart (DRatemax, DRatecur, conns, size):
10 cfree ← getCapacity (DRatemax, DRatecur, conns)
11 tcapacity ← size/cfree
12 return tcapacity

13 Function getCapacity (DRatemax, DRatecur, conns):
14 usageRate← DRatecur/DRatemax
15 cfree ← DRatemax/((conns · usageRate) + 1)
16 return cfree

connection has to be established, the connection setup delay depends on whether
connection setup includes a Transport Layer Security (TLS) handshake, i.e., useTLS.
The Threshold Policy has this information available because it knows about the
destination host and port of the transfer and about existing connections. Accordingly,
the Threshold Policy multiplies the RTT by the estimated number of round trips
to initiate a resource load by reusing an existing connection or to establish a new
TCP connection with or without TLS handshake. The capacity part estimates the
time to transfer all bytes of the resource back-to-back, excluding connection setup
delay, see Function getCapacityPart shown in Algorithm 6.2. This time depends on
the Size to be Received, i.e., size, which is divided by the currently available
downstream capacity, cfree.

The currently available downstream capacity, cfree, is computed by the Function
getCapacity3 shown in Algorithm 6.2. The Threshold Policy uses the current
maximum data rate on an access network, DRatemax, as an estimate of the maximum
downstream capacity on the access network. It assumes fair sharing of the maximum
downstream capacity among all concurrent connections. To split the maximum down-
stream capacity among concurrent connections, the Threshold Policy considers
the number of currently established connections across the access network, conns.
However, as connections may be idle, the total number of connections may be higher
than the number of active connections currently transferring data. Therefore, the

3Note that this is just one possible algorithm to estimate cfree. We tested different variants of
the Threshold Policy using different algorithms for cfree, e.g., which counted transfers seen
by the policy or which used a threshold to determine whether to consider a network “free” or
“busy”. In our tests, we found that the algorithm shown here yielded the best results, i.e., shortest
load times. Therefore, our final version of the Threshold Policy uses the algorithm shown in
Algorithm 6.2.

65

Chapter 6 Access Network Selection Policies

Threshold Policy weights conns by usageRate, the percentage of the maximum
downstream capacity which is currently occupied. The Threshold Policy uses the
current data rate on the access network, DRatecur, as an estimate of the currently
occupied downstream capacity. It subtracts DRatecur from DRatemax to estimate free
available downstream capacity and then divides this by DRatemax for the ratio to
maximum downstream capacity.

6.3.3 Resource Load Time Estimation

Algorithm 6.3: Predict resource load time over a given network
1 Function predictLoadTime (RTT, c, reuse, useTLS, size):
2 if reuse then
3 tload ← RTT + (size/c)
4 else // Estimate connection setup time and slow start

5 if useTLS then
6 tsetup ← 3 · RTT
7 else
8 tsetup ← RTT
9 slowStartRounds← 0

10 sizeChunk ← INITCWND
11 sizemaxChunk ← (c · 0.8) ∗ RTT
12 while sizeChunk < sizemaxChunk and size > 0 do

// Emulate one slow-start round which fetches a chunk

13 slowStartRounds← slowStartRounds + 1
14 sizeChunk ← sizeChunk · 2
15 size← size− sizeChunk
16 DRateused ← sizeChunk/RTT
17 tload ← tsetup + slowStartRounds · RTT + (size/DRateused)

18 return tload

If a resource load is capacity-bound, the Threshold Policy estimates the resource
load times for all available access networks, see Algorithm 6.3. Here, the Threshold
Policy uses RTTmedian instead of RTTmin to get a more realistic estimate of what two-
way latency that a capacity-bound resource load experiences on this access network
in case of concurrent transfers. Moreover, the Threshold Policy differentiates
between resource loads where a connection can be reused and resource loads where a
new connection has to be established. If it is possible to reuse a connection over this
access network, i.e., reuse is True, the Threshold Policy assumes that only one
round trip is necessary to initiate data transfer. To encourage connection reuse, then,
the Threshold Policy assumes that all bytes of the resource are transferred using
the available downstream capacity. Therefore, it computes the latency and capacity
part for reused connections, as explained in Section 6.3.2, but based on RTTmedian.

66

6.3 Threshold Policy for Web Browsing

If a new connection has to be established, the Threshold Policy predicts the load
time using a model of connection setup delay and TCP slow start. First, the Thresh-
old Policy estimates the connection setup time as a multiple of RTT, depending
on whether TLS is used, similar to computing the latency part in Section 6.3.2. The
Threshold Policy then estimates the duration of slow start using a model of slow
start rounds: Each round takes one RTT and loads a part of the resource of a certain
sizeChunk, starting with the initial congestion window, INITCWND. Then, after each
new round, sizeChunk doubles, similar to the multiplicative increase of the congestion
window during slow start. Slow start continues until either the entire resource has
been loaded, i.e., the sum of chunk sizes has surpassed size, or the sizeChunk has
reached its maximum. The maximum chunk size, sizemaxChunk, is the chunk size at
which the connection has reached its fair share of the overall downstream capacity.
We estimate sizemaxChunk as 80% of the Bandwidth Delay Product to account for
fluctuations in downstream capacity. If the maximum chunk size is reached, but
there are still bytes of the resource to be loaded, we assume that the rest of the
resource is loaded at a rate which corresponds to the chunk size reached after slow
start. Therefore, we compute the DRateused for the rest of the resource load based
on the chunk size. Finally, we sum up tsetup, RTT multiplied by slowStartRounds,
and, if applicable, the additional load time for the rest of the resource.

6.3.4 Variant: Threshold Policy with Penalty

Although the Threshold Policy already takes current downstream capacity into
account, we design a variant of the Threshold Policy that explicitly accounts for
external cross-traffic, the Threshold Policy with Penalty. Here, in addition to
considering traffic sent and received by the end-user device the Threshold Policy
is running on, the Threshold Policy with Penalty seeks to consider traffic
generated by other end-user devices on the same access network. For example, this
may include other stations on the same wireless link or end-user devices that are
using the same bottleneck within an access network. As large amounts of cross-traffic
may overload the access network, this network may provide inadequate performance.
Therefore, the Threshold Policy with Penalty aims to avoid selecting a network
with high current cross-traffic.

To avoid networks with high cross-traffic, the Threshold Policy with Penalty
first has to detect the presence of external cross-traffic and then react to it, i.e., take
cross-traffic into account when selecting an access network.

To detect external cross-traffic, here, we initially focus on the wireless link of the
access network, as wireless links are often the bottleneck [3]. To detect cross-traffic
on the wireless link, we use channel utilization, see Section 5.2. We learn channel
utilization from a network interface driver, such as a WiFi driver, which reports the
percentage of time during which it has sensed the channel busy, i.e., the time in which
another station was sending on this channel. A high current channel utilization can
indicate that the network is currently subject to external cross-traffic. Alternatively, it
may indicate the presence of other sources of interference, e.g., microwaves generating

67

Chapter 6 Access Network Selection Policies

electromagnetic waves on frequencies which are also used for WiFi. In both cases,
while the network interface driver senses the channel busy, the station cannot send
or receive traffic through this network. Therefore, we interpret an increase in channel
utilization as a decrease in available downstream capacity, regardless of whether this
decrease was indeed caused by external cross-traffic or by other influences. Hereby,
the Threshold Policy with Penalty considers an access network impacted by
cross-traffic on the wireless link if its channel utilization is greater than zero. Based
on this information, the Threshold Policy with Penalty adjusts its downstream
capacity estimate for the access network, i.e., penalizes the network so it is selected
less frequently.

As an alternative design, we consider defining a threshold above which we deem the
network overloaded, such as a channel utilization of 60%, which we observe for a busy
network in our tests. The reasons for the threshold of 60% instead of 100% are related
to overhead and statistical effects when accessing the WiFi channel. As WiFi uses
CSMA/CA, there is a sensing period between the transmission of two frames, during
which no station is allowed to send, see also Section 2.1.1.1. During such sensing
periods, the network interface driver does not sense the channel busy, but still, no
station is able to send traffic. We test variants of the Threshold Policy with
Penalty using such a static threshold, but find that it fails to adequately capture
the fact that even low external cross-traffic may have an impact on available down-
stream capacity. Therefore, we do not further consider a static threshold between an
“overloaded” and a “free” network.

One limitation of using channel utilization is that while it is often readily available
for WiFi, it is often not available for cellular. The reason is that cellular modems
often expose limited information about network performance characteristics such as
channel utilization. Another limitation of channel utilization is that it cannot indicate
external cross-traffic outside of the wireless link, e.g., on the uplink between the access
network and the Internet.

Because of the limitations of channel utilization, as an alternative, we consider de-
tecting external cross-traffic using latency variation. Latency variation estimates are
available for all access networks with existing connections, i.e., they may be available
for cellular as well as WiFi. We consider a high latency variation as an indicator of
possible external cross-traffic because a high latency variation may reflect an increase
or fluctuation in latency on some or all connections. This increase or fluctuation in
latency, in turn, may indicate an increase in queueing delay on a bottleneck link,
thus, a congested link. We collect two different estimates for latency variation, recall
Section 5.2: One estimate is the Smoothed Round Trip Time (SRTT) variation within
connections, which reflects fluctuations in SRTT samples of the same TCP connec-
tion over time. The other estimate is the SRTT variation among connections, which
reflects differences of the SRTTs of multiple TCP connections over the same access
network. Our rationale for considering both of these latency variation estimates is
that we may get a reliable indication of cross-traffic by combining both estimates.
Using latency variation estimates, we consider an access network impacted by exter-
nal cross-traffic if latency variations are higher than the minimum latency variation

68

6.3 Threshold Policy for Web Browsing

we have recently observed. However, a limitation of using latency variation is that it
is impacted by self-induced congestion as well, i.e., congestion caused by the traffic
that our end-user device itself is sending or receiving. As the Threshold Policy
already accounts for the end-user device’s own traffic, this can penalize a busy net-
work twice. Therefore, our Threshold Policy with Penalty focuses on channel
utilization as an indicator of external cross-traffic.

After having detected the presence of cross-traffic and/or a high degree of congestion
on an access network, we penalize it, i.e., select the network not as often or not at
all. For the Threshold Policy with Penalty, we introduce a penalty, i.e., we
decrease the downstream capacity estimate of a network where we see congestion
proportionally to the indicated congestion. This increases the load time estimate for
this access network, thus, the network is selected less after. An alternative approach
is to define a cross-traffic threshold above which we consider the network overloaded,
therefore, we do not select a network while it is overloaded. We do not follow the
latter approach because even with external cross-traffic, we may still be able to utilize
an access network, and not utilizing the network at all may limit the usefulness of
IANS. We study the feasibility of using channel utilization or latency variation for
detecting cross-traffic within the Socket Intents prototype, see Section 8.5.

6.3.5 Application Support for the Threshold Policy

To be able to use the Threshold Policy, an application has to specify the Size
to be Received i.e., the number of bytes that the application expects to receive
in reply to a sent request, for a new transfer such as a Web resource load. To an
application, the Size to be Received of a resource may be available from metadata
within the Web page that references the resource. Alternatively, the application can
query the Size to be Received. Hereby, the application first issues an HyperText
Transfer Protocol (HTTP) HEAD request or an HTTP GET request for the first,
e.g., 1000 Bytes4 of the Resource. As this first request is small, the application can
set an Intent to prioritize short latency. The reply to this request includes the size of
the resource in the Content-Length header, so the application can then set the Size
to be Received for loading the rest of the resource.

Because browsers are complex, fast-moving systems and we want to be flexible to
use different browsers with our prototype, we implement Socket Intents support in a
client-sided Web proxy, see Section 7.4.1. While this allows us to study IANS, the
proxy adds some overhead in the form of an extra RTT for the initial request and an
increased server load, since the server may have to answer two requests for a resource.

4When choosing this parameter, there is a trade-off between overhead and loading small resources:
With a higher number of bytes initially requested, the initial overhead to load the first part
increases, but there is also a higher possibility to load small resources in their entirety with
the first load. To incur minimal overhead, we find that the size of the first request plus the
corresponding HTTP headers should fit within the first packet (usually around 1500 Bytes) or
first few packets, and definitely fit within the initial congestion window.

69

Chapter 6 Access Network Selection Policies

To avoid this overhead, future work should implement Socket Intents in the browser
itself.

6.4 Optimist and Pessimist Policy for Video

To improve the performance of HAS, we design two IANS policies which select be-
tween single access networks: The Optimist Policy and the Pessimist Policy.
The objective of these IANS policies is to select an access network which provides
short load times for each transfer, e.g., each video segment, and which avoids exces-
sively long load times that may lead to stalling of the video playout.

As video segments are usually hundreds of Kilobytes to multiple Megabytes in size,
the transfers to load these segments are usually capacity-bound, so the IANS policies
select the network with the higher downstream capacity. Hereby, both IANS poli-
cies predict the load times of each segment on all available networks similar to the
Threshold Policy, see Section 6.3.3. For this prediction, the IANS policies use re-
cent downstream capacity estimates. However, as network conditions may vary over
time, the available downstream capacity estimates may not always be up to date,
especially on networks which have not been recently used. On such networks, the
recent downstream capacity estimate may be lower than the achievable downstream
capacity due to a lack of traffic that saturates the network. Therefore, the Optimist
Policy periodically tries using a network which it has not used recently, but for
which it has seen high downstream capacities in the past, thus, shorter “best case”
load times. Hereby, the Optimist Policy hopes that the network will be able to
provide such high downstream capacities again.

If a network provides insufficient downstream capacity, choosing this network may
lead to long load times. This, in turn, may lead to the buffer level within the HAS
player decreasing, so it may switch to a lower representation or stall the video playout,
which leads to a bad Quality of Experience (QoE). The Pessimist Policy tries to
avoid this case by detecting a decrease in downstream capacity, i.e., an increase
in predicted “worst case” load time. In cases where the predicted load time on a
network exceeds the allowed duration, the Pessimist Policy considers switching to
a different network which provides a shorter “worst case” load time.

Both the Optimist Policy and the Pessimist Policy receive the same Socket
Intents from the application: First, they learn the Traffic Category of a transfer,
i.e., Query for manifest files and initial segments or Bulk for video segments. From
this, the IANS policies learn whether the transfer is latency-bound or capacity-bound.
For video segments, which are capacity-bound, the IANS policies learn the Bitrate
Received of the representation for the next segment selected by the Adaptive Bit-
Rate algorithm (ABR) as well as the segment length. From this information, the
IANS policy can calculate the expected size of the next segment, which it needs for
estimating the load time. Moreover, the IANS policy knows about the Duration,
i.e., the current buffer level as the maximum allowed duration of the transfer to avoid
stalling. The Optimist Policy uses this information to better assess the risk to

70

6.4 Optimist and Pessimist Policy for Video

switch to a recently unused network, while the Pessimist Policy assesses the risk
to load a segment over a network with a high predicted “worst case” load time.

As IANS policies make a decision after the ABR has chosen the next representation of
a video segment to be loaded, the IANS policies attempt to select a suitable network
to satisfy the requirement of the ABR, i.e., to select a network via which the segment
will load in time. While the IANS policies react to the ABR by attempting to provide
short load times for the segment of a size chosen by the ABR, the ABR may also
indirectly react to the IANS policy: Selecting the network with short load time for
each segment enables a HAS player to accumulate more content in its playout buffer.
The current buffer level may be used as an input for the ABR used by the HAS player
to adapt to the current network conditions. Therefore, an increase in buffer level may
lead to switching to a higher representation of the content, i.e., a representation which
requires higher downstream capacity, but which also yields a higher video quality.
This has the potential to create a feedback loop between the ABR and the IANS
policy. However, the control loops are decoupled because the IANS policy decision
does not override or directly influence the ABR decision. The only influence the
IANS policy decision has on the ABR is an improve in network conditions, which can
be achieved by others means as well, e.g., an increase in Received Signal Strength
(RSS).

6.4.1 Optimist and Pessimist Policy Algorithm in Detail

For each transfer, i.e., each video segment as well as the initial manifest file, the
Optimist Policy and Pessimist Policy select an access network according to
Algorithm 6.4. For transfers with the category set to QUERY, such as manifest files
and initial segments, which are small, the IANS policies select the access network with
the shortest current latency. For transfers with the category set to BULKTRANSFER,
i.e., the video segments, the IANS policies compute the expected size of the segments
according to the representation bitrate and the length of one segment.

The Optimist Policy and the Pessimist Policy predict load times on all available
access networks similar to the Threshold Policy, see Algorithm 6.3. While the
Threshold Policy uses a single estimate of the currently available downstream ca-
pacity, the Optimist Policy and Pessimist Policy use four downstream capacity
estimates on different time scales to account for downstream capacity changes over
time and to compute different load time estimates:

• cshort: The maximum DRatemax of the last 1 second to compute tshort
• cmid: The maximum DRatemax of the last 10 seconds to compute tmid
• clong: The maximum DRatemax of the last 60 seconds to compute tlong
• cverylong: The maximum DRatemax of the last 600 seconds to compute tverylong

The IANS policies first compare the tmid estimates for all networks to determine a
candidate network, netcand, on which the transfer is likely to complete in a short
time. However, as the tmid may be out of date, the IANS policies then take the

71

Chapter 6 Access Network Selection Policies

Algorithm 6.4: Optimist and Pessimist Policy decision algorithm.
Input: Transfer with category, bitratesegment, tsegment, tbuffer, useTLS
Networks n ∈ N with RTTminn , reusen, cshortn , cmidn , clongn , cverylongn
Output: Network to use for transfer

1 if category = QUERY then
2 return network with shortest RTTmin
3 else if category = BULKTRANSFER then
4 size← bitratesegment · tsegment // Estimate size of this segment

5 foreach network n ∈ N do
6 tshortn ← predictLoadTime (RTTminn , cshortn , reusen, useTLS, size)

// worst case load time based on cshortn of last 1 second

7 tmidn ← predictLoadTime (RTTminn , cmidn , reusen, useTLS, size)
// expected load time based on cmidn of last 10 seconds

8 tlongn ← predictLoadTime (RTTminn , clongn , reusen, useTLS, size)
// long term estimate based on clongn of last 1 minute

9 tverylongn ← predictLoadTime (RTTminn , cverylongn , reusen, useTLS, size)
// best case based on cverylongn of last 10 minutes

10 netcand ← network with shortest tmid
11 if Optimist Policy then // See Alg. 6.5

12 return optimistPolicy (netcand, tsegment, tbuffer, tlongcand , tverylongcand)

13 else if Pessimist Policy then // See Alg. 6.6

14 return pessimistPolicy (netcand, tsegment, tbuffer, tshortcand , tmidcand ,
tlongcand)

other downstream capacity estimates into account: The Optimist Policy considers
switching to an alternative network, netalt, with a better longer-term estimate, see
Section 6.4.2. The Pessimist Policy determines whether the short term estimate
on the netcand is too long, in which case it considers switching to a netalt which it
deems “safer”, see Section 6.4.3.

6.4.2 Optimist Policy: Considering an Alternative Based on Best Case

When an access network has not been recently used for a large transfer, its recent
downstream capacity estimate may be outdated, i.e., below the actual available down-
stream capacity. Therefore, after the Optimist Policy has determined a netcand to
use based on the tmid load time estimate, it considers switching to a netalt according
to Algorithm 6.5. Hereby, it considers the “best case” load time using the maximum
downstream capacity estimates of the last 600 seconds (10 minutes), i.e., the tverylong,
for the load times on all available networks. If the netcand also yields the better
“best case” load time, the Optimist Policy stays with this network. Otherwise, if
a different netalt has a shorter “best case” load time, the Optimist Policy switches
to this network in the following cases: If playout has not started yet, it tries out
the alternative network because there is no risk of intermediate video stalling. If

72

6.4 Optimist and Pessimist Policy for Video

Algorithm 6.5: Optimist Policy: Consider to switch networks.
1 Function optimistPolicy (netcand, tsegment, tbuffer, tlong, tverylong):
2 netalt ← network with shortest tverylong

// Compare to netcand with shortest tmid
3 if tbuffer = 0 and netalt not used for last segment then
4 return netalt // Playout not started yet -- safe

5 if netalt not used for last 3 segments then
6 if tlongalt <

2
3 · tbuffer then

7 return netalt // Safe

8 else if tlongcand > 2
3 · tbuffer and tlongalt < tlongcand then

9 return netalt // Not safe, but better

10 else if netalt not used last 10 segments then
11 return netalt // Not used recently, try it

12 return netcand // If we have not switched

the alternative network has not been used for at least three segments5 and yields an
acceptable tlong (using the downstream capacity estimate of the last 60 seconds), i.e.,
the load time on this network is below 2

3 of the buffer level6, it deems this network
“safe” to try. Otherwise, if the tlong on the netcand exceeds 2

3 of the buffer level as well,
neither network is “safe” to use, but the Optimist Policy picks the netalt if it has a
shorter tlong. If the netalt was not picked for more than 10 segments7, the Optimist
Policy selects this network to give it a chance, as its tlong may be outdated like
its tmid. Finally, if the Optimist Policy has not decided to switch to the netalt, it
selects the netcand to use.

6.4.3 Pessimist Policy: Considering an Alternative Based on Worst
Case

If the load time of a transfer exceeds the buffer level, this will likely lead to stalling
of the playout. If the load time exceeds the segment duration, this may result in a
decrease of the buffer level within the player and may mean that the selected network
is unable to sustain the current representation, i.e., quality level. Based on these two
concerns, the Pessimist Policy first considers how likely these issues are to occur
on the current netcand, and then considers switching to an netalt if it deems these
issues less likely on this network.

To achieve this, the Pessimist Policy looks at the tworst using the tshort of the last
second, see Algorithm 6.6. If the tworst on the netcand is longer than either the buffer
level tbuffer or the segment duration tsegment, it switches to an netalt in the following
cases: If the tworst on the netalt is shorter, the Pessimist Policy deems this netalt

5We choose this parameter based on the segment duration of 4 seconds, which we use in our
evaluation, such that the duration of three segments exceeds the tmid of 10 seconds.

6We compare the load time estimate to 2
3

of the buffer level to have a safety margin.
7We choose this parameter based on the segment duration of 4 seconds, so the load times for 10

segments exceed our longtermEstimate of 60 seconds by a factor of 1.5.

73

Chapter 6 Access Network Selection Policies

Algorithm 6.6: Pessimist Policy: Consider to switch networks.
1 Function pessimistPolicy (netcand, tsegment, tbuffer, tshort, tmid, tlong):

// netcand is network with shortest tmid
2 tworst ← tshortcand // If not available, use tmidcand

3 if tworst > tbuffer or tsegment then // Be concerned

4 netalt ← Network with shortest tshort
5 if tshortalt < tbuffer then
6 return netalt // safer to use

7 else if netcand used for last segment and tworst >
4
3 · tbuffer then

// tworst likely accurate: Use netalt if faster for either estimate

8 if tshortalt < tshortcand then
9 return netalt

10 else if tlongalt < tlongcand then
11 return netalt
12 return netcand // We are not concerned or found no netalt

safer to use. The Pessimist Policy considers both estimates because the tshort may
be out of date on a network that was not recently used. If, on the contrary, the
netcand was used for the last segment, the Pessimist Policy considers the tworst
more likely to be accurate. If, then, the tworst is considerably longer than tbuffer, i.e.,
4
3 times longer, the Pessimist Policy is more ready to switch: It switches if the
netalt provides either a better tshort or tlong

8. If neither of the estimates is better for
the netalt, the Pessimist Policy stays with the netcand.

6.5 Selective MPTCP Policy for Video

In addition to the Optimist Policy and Pessimist Policy, we experiment with an
IANS policy that selectively enables MPTCP for some transfers according to Algo-
rithm 6.7. As MPTCP provides the most benefits for large transfers, the Selective
MPTCP Policy only enables MPTCP when the category is set to BULKTRANS-
FER. Moreover, the Selective MPTCP Policy only enables MPTCP when suf-
ficient downstream capacity is available on all networks because we observe that
otherwise, the overhead of MPTCP connections and saturating the congestion win-
dow may overwhelm a network with insufficient downstream capacity. Determining
how much downstream capacity is sufficient is non-trivial. As a first estimate, we
compare the available downstream capacity, i.e., the cmid, to the transfer size, size,
of the bulk transfer. For our tests with HAS, we compute the estimated size of the
next segment, size, from the next representation bitrate and the segment duration,
similar to the Optimist Policy and Pessimist Policy. Then, we enable MPTCP
if the downstream capacity is above a fraction of the size, depending on the cur-
rent buffer level. Hereby, we select the network with the shortest latency, netshort,

8The netcand is initially selected based on having the shortest tmid, thus, the netalt cannot have a
shorter tmid.

74

6.5 Selective MPTCP Policy for Video

Algorithm 6.7: Selective MPTCP Policy decision algorithm.
Input: Transfer with category, bitratesegment, tsegment, tbuffer, useTLS
Networks n ∈ N with RTTmin, reuse, cshort, cmid, clong, cverylong
Output: Network to use for transfer

1 netshort ← network with shortest RTTmin
2 if category = QUERY then
3 return netshort // No MPTCP

4 else if category = BULKTRANSFER then
5 cmin ← lowest cmid // Last 10 seconds

6 size← bitratesegment · tsegment
7 if tbuffer > 10 and cmin > size/8 then // High tbuffer: Be risky

8 return all networks using MPTCP with first subflow on netshort
9 else if tbuffer ≤ 10 and cmin > size/4 then // Low tbuffer: Be prudent

10 return all networks using MPTCP with first subflow on netshort
11 else // Insufficient capacity for MPTCP

12 return network with highest cmid // No MPTCP

for the primary subflow, which is consistent with the default scheduler for MPTCP
on Linux, the minRTT scheduler. Otherwise, we use only the network with the
highest downstream capacity without any MPTCP to avoid overloading the lower
downstream capacity network. While the Selective MPTCP Policy focuses on
avoiding network overload due to low downstream capacity, future versions could also
take asymmetric latency on the networks into account, as MPTCP has been shown
to have issues with such scenarios. We do not consider this case in the initial version
of this policy, as we see asymmetric latencies as an issue which should be addressed
by the MPTCP scheduler.

75

7
Socket Intents Prototype

We implement Informed Access Network Selection (IANS), including Socket Intents,
network performance characteristics, and access network selection policies, within the
Socket Intents prototype. Our prototype consists of about 17k lines of C code and
its source code is publicly available under BSD License1.

First, we describe the architecture of the prototype. Then, we cover the Application
Programming Interfaces (APIs) that the prototype provides for applications to specify
their Socket Intents for a new connection or transfer. Furthermore, we detail how
the prototype collects network performance characteristics and how it realizes access
network selection policies. Finally, we present how we implement Socket Intents
support within a client-side Web proxy and a video player which supports HTTP
Adaptive Streaming (HAS).

7.1 Prototype Architecture

The Socket Intents prototype consists of two main components, see Figure 7.1: The
Socket Intents library, which enables applications to express their Socket Intents, and
the Multi Access Manager (MAM), which collects network performance characteris-
tics and hosts the access network selection policy.

1
https://github.com/fg-inet/socket-intents/

Application

Socket Intents Library

Socket Library

Multi Access

Manager
Multi Access

Manager

Policy

Network

Network
characteristics

gathererNetwork

Enhanced
Socket API (1.a)

Application

Socketconnect
API (1.b)

2.

3.

4.a 4.b

Figure 7.1: Architecture of the Socket Intents prototype.

77

https://github.com/fg-inet/socket-intents/

Chapter 7 Socket Intents Prototype

To allow applications to express their Socket Intents on a per-connection and per-
transfer basis, the Socket Intents library implements multiple APIs: Applications
can either initiate a new connection through the Enhanced Socket API (1.a) or a
new transfer through the Socketconnect API (1.b). Then, the Socket Intents library,
which implements both Socket Intents APIs, queries the access network selection pol-
icy within the MAM (2). As the MAM continuously gathers network performance
characteristics, the access network selection policy can access these network perfor-
mance characteristics as well as the Intents. Based on all available information, the
access network selection policy decides which access network(s) to use, i.e., which
local address to bind the new connection to or which existing connection to re-use.
Then, the access network selection policy communicates this decision back to the
Socket Intents library (3). Finally, the Socket Intents library applies the decision
(4a/b), e.g., by binding the new connection to the chosen local address.

To make the prototype easily extensible and portable across Operating Systems
(OSes), we implement it in user space. As we want all applications to be able to
benefit from IANS without having to replicate access network selection within each
application, we implement access network selection outside of the context of a single
application, but within an access network selection policy. Hereby, we place the access
network selection policy as a central instance on the host, which can be queried by the
Socket Intents library on behalf of any application. As access network selection can
be useful for different use cases and in different contexts, our prototype is not specific
to a single access network selection policy. Instead, we design access network selection
policies as exchangeable modules which are running within the context of the MAM.
The MAM can dynamically load a suitable access network selection policy based on
the current context of the end-user device. Because access network selection policies
need up-to-date network performance characteristics based on continuous observa-
tion of existing traffic, the MAM is a constantly running component, while access
network selection policies are exchangeable. Therefore, the MAM continuously gath-
ers network performance characteristics of the available access networks and makes
this information available to the currently loaded access network selection policy.

7.2 Socket Intents APIs

The Socket Intents prototype implements multiple APIs for applications to specify
their Socket Intents for a new connection or transfer. We design our Socket Intents
APIs on top of the Socket API because the Socket API is the de-facto standard
networking API on most OSes and because we want our prototype to be portable
across OSes. In this thesis, we present two API variants2: An API that allows to

2The Socket Intents prototype implements a total of four APIs. In addition to the two variants
presented in this thesis, there is an API based on getaddrinfo and an asynchronous variant of our
Socketconnect API based on select. In the getaddrinfo API, an application obtains information
about what IP addresses to use for a new connection from a modified getaddrinfo. In the asyn-
chronous Socketconnect API, the application requests a socket to use for a new transfer similar
to the synchronous Socketconnect API presented in this thesis. However, the asynchronous API

78

7.2 Socket Intents APIs

express Socket Intents for individual connections, see Section 7.2.1, and an API that
allows to specify Socket Intents for individual transfers, see Section 7.2.2.

7.2.1 Socket Intents Per Connection: Enhanced Socket API

To allow applications which are using the Socket API to benefit from IANS, we
design an enhanced version of the Socket API. In this API, an application can set
one or multiple Socket Intents for each new connection, i.e., each socket that it
creates. This allows the prototype to choose an appropriate access network for the
new connection.

For each created socket, the application can set its Socket Intents using setsockopt.
Hereby, we define a new socket option level for Intents with new socket options. For
each socket, Intents are stored within a connection context, whereas all calls that
belong to the same connection reference the same context. Our rationale for adding
an explicit reference to the connection context to every call is that we need it to link
Socket API calls to Domain Name System (DNS) resolution, as getaddrinfo, by itself,
does not include a reference to a socket or any other reference to a connection. The
reason for including DNS resolution in our API and linking it to the other calls is
that we have to resolve domain names over the same access network as the connection
will use, recall Section 6.1.

7.2.2 Socket Intents Per Transfer: Socketconnect API

To allow applications to specify their Socket Intents for individual transfers, the
Socket Intents prototype implements the Socketconnect API. Here, we integrate DNS
resolution and connection establishment within a single call, socketconnect. Before
a transfer, the application calls socketconnect with a domain name, a destination
port, and a list of Socket Intents. The API returns a socket which is connected to
a remote host resolved from this domain name. The connection can either be newly
established or be reused from the pool of available connections. The application can
then use this socket for its transfer and once it is done, the application releases this
socket to return it to the pool of available connections using socketrelease or closes
the connection using socketclose.

We choose to use sockets as an abstraction for connections to ease the integration
of our API into existing applications. The application calls socketconnect either
with an existing socket, which represents the implicit pool of all connections to the
same destination or with “-1” to explicitly request a newly established connection.
The API then informs the application whether the returned socket corresponds to
a new connection or a reused connection. This allows the application to carry out

uses a non-blocking connect call and the application has to check whether the socket is ready for
read/write operations using a modified select. As we do not use these APIs for this thesis, we
do not provide further details here.

79

Chapter 7 Socket Intents Prototype

any necessary initialization for a new connection, e.g., to perform a Transport Layer
Security (TLS) handshake, which it does not need for an existing connection.

Beneath the API, the Socket Intents library manages the pool of available connec-
tions per application, remote domain name, and service. When the application calls
socketconnect, the library checks whether there are currently unused open sockets in
the pool. It then sends this information to the access network selection policy, along
with the Socket Intents of the new transfer. The access network selection policy then
either chooses to reuse one of these connections, i.e., an existing socket, or it provides
information to open a new connection, i.e., a new socket. As connections to the same
remote host and port can be used interchangeably for stateless application layer pro-
tocols such as HyperText Transfer Protocol (HTTP)3, the prototype groups all such
connections into socket sets. Sockets in the same set can be bound to different local
addresses, thus, use different access networks.

7.3 Implementing Access Network Selection

To select an access network for a new connection or transfer, the Socket Intents
prototype calls an access network selection policy, which is hosted within the MAM.
The MAM runs continuously and collects information on which access networks are
currently available and collects their network performance characteristics. If provides
this information to the access network selection policy.

7.3.1 Multi Access Manager

The MAM is the component of the Socket Intents prototype that hosts the access
network selection policy and provides it with network performance characteristics.
After startup, the MAM collects information on what access networks are currently
available. Hereby, it queries the OS regarding the locally available network interfaces.
This results in a list of local interfaces, i.e., a list of access networks, assuming that
every network interface is connected to a different access network. Furthermore, the
MAM queries what IP addresses are assigned to these interfaces to see which inter-
faces are available for use. As IP addresses on the same interface may change, e.g.,
with temporary IPv6 addresses, for each interface, the MAM stores not only indi-
vidual IP addresses, but aggregates them by network prefixes. Moreover, the MAM
needs to distinguish access network by IP prefix when collecting network performance
characteristics, where it matches statistics for Transmission Control Protocol (TCP)
connections to the corresponding interface. In addition, the MAM reads a configura-
tion file which specifies which access network selection policy to load. Furthermore,
the configuration file specifies which of the configured IP prefixes, i.e., access networks
to take into account. For each considered access network the configuration file may

3The current prototype supports HTTP/1.1. However, Socket Intents support can also be imple-
mented in, e.g., an HTTP/2 library or a Quick UDP Internet Connection (QUIC) implementation

80

7.3 Implementing Access Network Selection

specify DNS configuration and additional per-network information, e.g., which net-
work to use by default. The MAM then initializes the access network selection policy
with this information. To be flexible, e.g., to use different access network selection
policies without having to restart the MAM, thus, losing the state of the current net-
work performance characteristics, the MAM is able to change access network selection
policies while it is running.

After initialization, the MAM starts gathering network performance characteristics
on all access networks, i.e., all interfaces and network prefixes. Then, the MAM
runs as a service available to all applications on the host via a Unix domain socket.
Through this socket, the Socket Intents library sends the Intents for new connections
or transfers and receives the decision from the access network selection policy in
return. To answer such requests asynchronously, the MAM runs an event loop using
libevent. We design the MAM to not keep state per request to be able to scale, e.g.,
when answering requests from many applications. However, some access network
selection policies do keep state internally.

7.3.2 Collecting Network Performance Characteristics

To be able to provide up-to-date information on the current network performance
characteristics to the access network selection policies, recall Chapter 5, the MAM
collects and stores such information by periodically querying different parts of the
networking stack. The query interval is configurable. We test different callback
intervals, e.g., 1 s, 200 ms, 100 ms, or 50 ms. While a long interval risks using
outdated values in the access network selection policy, a short interval results in
more computational overhead due to more frequent callbacks. As our experiments
require policy decisions on the timescale of tens to hundreds of microseconds, we use
a callback interval of 100 ms.

For Smoothed Round Trip Times (SRTTs) and SRTT variations, the MAM queries
the TCP stack through the Netlink API for all current TCP connections. It only
includes TCP connections that are not in SYN-SENT, SYN-RECV, TIME-WAIT or
CLOSE state, as connections in these states do not offer SRTT samples. To aggregate
SRTTs for a specific access network, the MAM then filters the connections by the
network prefix configured on this access network. To get data rates, the MAM reads
network interface counters. It stores them and aggregates them, e.g., by computing
the maximum observed upstream and downstream data rate. Hereby, the MAM
considers samples during a configurable time period. Here, an interval of 10 minutes
has shown to yield good results. While longer intervals make it more likely that any
traffic was present at the time, less recent results may also have become outdated in
the meantime because available downstream capacity changed. For wireless network
performance characteristics, the MAM periodically queries the WiFi driver once per
callback interval. Here, a higher query interval may increase energy consumption if
it prevents a driver from going into power save mode. We only get nonzero network
performance characteristics for access networks on which the host sees traffic. We use
a default value of zero for network performance characteristics that are unavailable.

81

Chapter 7 Socket Intents Prototype

In this case, these values are not taken into account by our access network selection
policies.

7.3.3 Access Network Selection Policy Implementation

The Socket Intents prototype implements access network selection policies, see Sec-
tion 6.1. As there may not be a single optimal access network selection policy for
every scenario, we implement access network selection policies as exchangeable mod-
ules which are loaded by the MAM according to its configuration file. An access
network selection policy module implements a set of callback functions, which are
called to select the access network for each new connection or transfer. Additionally,
the access network selection policy implements callbacks for initialization and tear-
down. Upon initialization, the access network selection policy gets a list of access
networks from the MAM augmented with information from the configuration file.
The access network selection policy stores state per access network, e.g., whether an
access network is the default network. For teardown, e.g., if MAM is terminated or if
the access network selection policy module is exchanged, the access network selection
policy then has to clean up any internal state.

After being initialized, the access network selection policy is ready to select an access
network for connections or transfers. In each case, the access network selection policy
gets a callback for an application request, which provides the domain name of the
remote host, the remote port, and the Socket Intents for the new connection or trans-
fer. Additionally, for per-transfer access network selection, the request may include a
list of connections available for reuse. In addition to the input from the application,
the access network selection policy has network performance characteristics available
for all available access networks on which the host has recently seen traffic. Based
on this information the access network selection policy selects an access network, see
Chapter 6. Hereby, the access network selection policy chooses a local IP address
for binding the new connection, which is configured on the interface connected to the
chosen access network. Alternatively, the access network selection policy can reuse an
already established connection over the access network by choosing one of the avail-
able sockets. After selecting an access network, the access network selection policy
resolves the domain name over this network. It resolves the names asynchronously
and keeps separate DNS configurations for different access networks using libevent’s
asynchronous getaddrinfo.

7.4 Applications Supporting Socket Intents

To benefit from IANS using the Socket Intents prototype, an application must use
one of the Socket Intents APIs, e.g., the APIs from Section 7.2. For Web browsing,
we wrote a Web proxy which uses the Socketconnect API to set the Size to be
Received Intent for each Web resource. For HTTP Adaptive Streaming (HAS), we
modified a video player to use the Socketconnect API for each segment.

82

7.4 Applications Supporting Socket Intents

7.4.1 Web Proxy

To enable IANS for Web browsing, we set the Size to be Received Socket In-
tent for each individual transfer, i.e., each resource. Because browsers are complex,
fast-moving systems and we want to be flexible to use different browsers with our
prototype, we implemented Socket Intents support in a Web proxy, thus, enabling
any browser to use Socket Intents.

We wrote an HTTP proxy which supports the Socketconnect API and provides the
Size to be Received for each resource to be loaded. To acquire the size of an
individual resource, the proxy performs a two-step download: It first fetches the
first 1000 Bytes4 while setting the Content-Range header. If the resource size is
1000 Bytes or smaller, the proxy already receives the full resource with this first
request. Otherwise, it receives the first part and knows the size of the rest of the
resource from the Content-Length header5. Thus, the proxy can set the Size to be
Received Socket Intent for the IANS policy to select a suitable access network for
loading the rest of the resource. Using the Socketconnect API allows the proxy to
reuse TCP connections wherever possible, i.e., when loading another resource from
the same remote host. This enables the proxy to benefit from IANS on a per-request
basis without delaying loading small resources.

As most Web pages are HTTPS-based and do not allow unencrypted HTTP6, our
proxy supports connecting to remote Web servers via TCP as well as TLS. TLS
support is realized using the openssl library. We store TLS state per local socket
within the proxy.

7.4.2 Video Player

To enable IANS for video streaming such as HAS, we implement Socket Intents sup-
port within a video player using Dynamic Adaptive Streaming over HTTP (DASH).
We modify the GPAC player7 version 0.7.2-DEV. We choose GPAC because it is
written in C, which enables it to seamlessly use our APIs and because it provides
better documentation than other players.

4The size of the initial chunk is configurable and presents a tradeoff between putting more load on
a short latency network to load initial chunks for all resources and loading more small resources
with the initial chunk. We first test an initial sizes of 4000 Bytes and find that it results in too
much load on the low capacity network in our experiments. We do not observe this problem
for 1000 Bytes, while 1000 Bytes of content fits within a single packet if the HTTP headers are
around 500 Bytes or less, which we observe for the Web pages we test first.

5Some Web servers do not set a Content-Length for some resources. In such cases, an IANS policy
does not know the size, but may, e.g., selects the shorter latency network by default.

6In April 2019, 78% of all page loads using Firefox use HTTPS, see https://letsencrypt.org/stats/

#percent-pageloads.
7GPAC is an open source cross-platform multimedia framework maintained by Telecom Paris Tech,

see http://www.gpac.io/. GPAC implements a video player called MP4Client on Linux and Osmo4
on other platforms. Addtionally, GPAC contains a segmenter called MP4Box, which converts
media into different formats, a tool called DashCast to create DASH conforming streams, and
other tools.

83

https://letsencrypt.org/stats/#percent-pageloads
https://letsencrypt.org/stats/#percent-pageloads
http://www.gpac.io/

Chapter 7 Socket Intents Prototype

GPAC includes an Adaptive Bit-Rate algorithm (ABR), which select the representa-
tion of the next segment to be loaded, based on the download rate of the previous
segment and/or the current status of the video playout buffer. In particular, GPAC
implements multiple different ABRs such as BBA-0 [63] and BOLA [64].

Within the GPAC player, we implemented support for the Socketconnect APIs to
enable it to use IANS on a per transfer basis, i.e., for each video segment. In par-
ticular, we add the socketconnect call to the networking module and then provide
the resulting socket, i.e., the connection over the chosen access network, to an in-
ternal data structure in GPAC called the download manager. For each video to be
played, the player has to first load a manifest file and initial segments, which are
small. For these transfers, we set the Traffic Category to Query so that the
access network selection policy prioritizes for short latency. When loading the actual
video segments, we set the Traffic Category to Bulk, to differentiate them from
the manifest files and the initial segments. The video segments are typically at least
hundreds of kilobytes in size, and, therefore, their load times are often dominated
by high downstream capacity instead of short latency. However, there are different
representations and the sizes of the segment depends on the chosen representation.
We provide additional information to the access network selection policy by setting
the Bitrate Received Socket Intent to the bitrate of the next segment as selected
by the ABR. Moreover, we use the status of the playout buffer of the video player to
set the Duration Socket Intent. This is the maximum duration that a segment load
should take while avoiding stalling the video playout. We have all of this information
readily available within the video player.

84

8
Impact of Informed Access Network

Selection on Application Performance

We evaluate the benefits of Informed Access Network Selection (IANS) for Web brows-
ing and HTTP Adaptive Streaming (HAS) using the Socket Intents prototype. First,
we outline our methodology, including network scenarios, workload, course of experi-
ments, and performance metrics for both Web and HAS. Then, we present the results
of our feasibility study, which shows how accurately our prototype estimates network
performance characteristics in our setup. Next, we evaluate the benefits of IANS for
Web performance, both focusing on the asymmetric network scenario and using a
systematic evaluation of scenarios with different downstream capacity and latency.
Finally, we show how IANS improves HAS.

8.1 Network Scenarios

Here, we outline our methodology for studying the benefits of IANS for Web perfor-
mance and HAS. To enable a systematic evaluation we use a testbed with mirrored
Web pages and video workload where we have full control over the network perfor-
mance characteristics. In addition, for Web, we evaluate the achievable speedups “in
the wild” by accessing Web pages via the Internet. For HAS, we do not use servers
“in the wild”, as a HAS workload is usually hosted on a single server, while Web
pages are spread across multiple servers. As we host our HAS workload on a single
server similar to a setup “in the wild”, while also emulating variable capacity on a
bottleneck link in our testbed, loading the video content from a server “in the wild”
promises no further insights.

Figure 8.1 shows our testbed, which represents a scenario where the access network is
the performance bottleneck. We have full control over almost all components, namely
a client, a traffic shaper, a Web server, and two network links, a wired and an 802.11
wireless link. To include the effects of actual WiFi we realize the wireless link via
a WiFi Access Point (AP). Yet, to limit side effects we use a stationary AP on an
otherwise unoccupied 5 GHz channel.

The client is connected to the traffic shaper via two access networks: To network 1
via a 1 Gbit/s Ethernet wired link with less than 1 ms delay, and to network 2
via the 802.11 wireless link. The wired link adds minimal delay and no congestion,

85

Chapter 8 Impact of Informed Access Network Selection on Application Performance

as it directly connects the client to the shaper. The wireless link adds delays and
congestion related to WiFi. With these two access networks, the client can either
load the Web pages mirrored on the Web server via each of the networks individually
or it can bundle the downstream capacity of both networks using IANS or Multipath
TCP (MPTCP).

We focus on a scenario with two access networks because it represents the realistic
case of an end-user device having both WiFi and cellular available to use. Here, our
goal is to explore the impact of different network performance characteristics in cases
where it makes sense to use different networks for different transfers. Therefore, we do
not consider trivial cases in which IANS would use the third network for all transfers,
if it outperforms the other two networks, or cases in which IANS would not use the
third network at all, if it does not provide better network performance characteristics
than the other two networks. Moreover, the combination of more than two networks
would render our experiment setup much more complex due to more combinations
of parameters. However, our IANS policies support selecting between more than two
networks, so our results can be generalized to scenarios with more than two networks
for cases in which at most two networks are actually utilized.

To emulate different network scenarios in our testbed, we realize delay and down-
stream capacity restrictions via a shaper. Note, the shaper clearly dominates the
network performance characteristics of network 1 while network 2 also sees the ef-
fects of WiFi. Cross-traffic can be imposed on the WiFi network and is realized by
using another client which sends traffic on the same channel. We impose both a con-
stant load of cross-traffic which fully utilizes the WiFi using an iperf User Datagram
Protocol (UDP) flow and a self-similar load of Transmission Control Protocol (TCP)
flows to fully utilize the shaper link using Harpoon [75]1.

We emulate different network scenarios for Web browsing and HAS, see Table 8.1.
For Web, we follow a factorial design approach across different values for latency and

1We configured Harpoon to generate TCP flows with an average total throughput similar to the
shaped downstream capacity, whereby the file sizes follow a Pareto distribution with alpha=1.2
and shape=1500 bytes and the inter-connection times follow an exponential distribution with a
mean of one second.

Shaper Local Web serverClient

Remote Web servers

Network 1

Network 2
Cross-traffic

client

Figure 8.1: Testbed setup.

86

8.1 Network Scenarios

downstream capacity, see Table 8.2a. Our rationale for this approach is to cover a
wide range of network performance characteristics which influence load times: While
latency dominates load times for small resources, downstream capacity dominates
load times for large resources. As small and large resources may also be influenced
differently by concurrent flows of different sizes, we study the effect of both UDP and
TCP cross-traffic on the WiFi. Note that in actual networks, downstream capacity
may exceed the values used in our experiments. However, in such cases, the network
which provides high downstream capacity is usually the best choice for all transfers,
resulting in trivial IANS policy decisions. As examining such cases does not promise
any interesting insights, we do not include such cases in our experiments.

To evaluate the achievable Web performance speedups “in the wild” the client can
reach the Internet via the traffic shaper. Our vantage point is located in a well-
connected university network. Thus, when using the above shaping parameters the
access networks should remain the bottleneck. To confirm this we repeatedly (5 times)
downloaded our chosen Web pages without any traffic shaping and confirm that the
median/75th quantile latencies are lower at 17/26 ms than most shaper latencies and
the receive times for large resources (> 320 KB, the 99th quantile of the resource
sizes) are small with a median of 41 ms. Thus, the network conditions imposed by
the traffic shaper have a significant impact on the performance of “in the wild” Web
page downloads. To minimize side-effects due to Domain Name System (DNS), we
run a resolver on the traffic shaper. For each domain name, this resolver returns the
same set of IP addresses in the same order. It caches the results for the maximum
experiment duration of 20 hours. Thus, within each experiment, subsequent page
loads are likely to be directed to the same Content Delivery Network (CDN) node.
To further limit the impact of Internet performance variations on any particular access
network selection policy, we randomize the order of page loads with different access
network selection policies.

For HAS, we study both scenarios with variable capacity and scenarios with cross-
traffic, see Table 8.2b. Here, we focus on varying the downstream capacity because
video segment load times are typically dominated by capacity. Our two scenarios
emulate different types of downstream capacity limitations: While a variable down-
stream capacity realized by the traffic shaper emulates limitations due to, e.g., low
Received Signal Strength (RSS) in a wireless network, cross-traffic limiting the avail-
able downstream capacity emulates the presence of other flows on the bottleneck
link of the network. For the variable capacity scenarios, we set the median down-
stream capacity based on factors of the lowest representation of one of our video
workloads, 218 kBit/s, for both networks. Since a downstream capacity of 218 kBit/s
is insufficient for loading the lowest representation due to overhead, we scale up the
downstream capacity by factors of 1.5, 2, 2.5, 4, 5, and 10 to allow loading different
representations. While on network 1 we set the downstream capacity to be constant,
we let the downstream capacity on network 2 vary around the median using different
variation patterns with a different coefficient of variation (cv). In particular, we vary
the downstream capacity according to six different variation patterns seen by HAS
sessions using 3G networks in mobile scenarios [76]. Note, our capacities are scaled

87

Chapter 8 Impact of Informed Access Network Selection on Application Performance

Table 8.1: Emulated network scenarios.

Property Levels

Downstream
capacity:

2, 5, 10, or 20 Mbit/s.

Additional
latency:

10, 50, or 100 ms.

WiFi
crosstraf-
fic:

None, constant UDP,
variable TCP.

(a) Web browsing.

Property Levels Levels
(variable capacity (cross-traffic
scenarios) scenarios)

Median down-
stream capacity:

218, 327, 436, 545, 872,
1090, or 2180 kBit/s.

2 or 5 MBit/s.

cv for downstream
capacities:

0, 0.3, 0.34, 0.45, 0.49,
0.6, or 0.7.

0.

Additional la-
tency:

80 ms. 10 or 100 ms.

WiFi crosstraffic: None. 1, 2, 3, 4,
or 8 TCP ses-
sions.

(b) HAS.

up from the original data set2 according to the median downstream capacity. As
latency we use 80 ms, as this is the latency seen in the mobile scenarios in which the
downstream capacity traces were taken [76]. For the cross-traffic scenarios, we keep
the downstream capacity on network 1 constant at 2 Mbit/s, which is sufficient for
loading a high representation of the video, e.g., with a sufficient screen resolution.
Network 2 provides an even higher downstream capacity of 5 Mbit/s, which enables
to load an even higher quality representation of the video, but we also introduce
TCP cross-traffic to network 2. In particular, we study the impact of 1, 2, 3, 4, or
8 concurrent TCP sessions, each of which load files of varying sizes using Harpoon.
To see if latency influences our results, here, we study both scenarios with 10 ms and
100 ms of additional latency on both networks.

8.2 Workload

We evaluate Web and video performance using different workloads hosted on the Web
server in our testbed, and, for Web, using remote Web servers.

8.2.1 Web

Our goal is to evaluate IANS vs. traditional access network selection policies across
a diverse set of Web pages popular among actual users while not falling into typical
pitfalls, e.g., initial redirects [60]. While we base our workload on the Alexa top list,
we limit bias [59] by selecting 102 highly ranked Web sites from nine categories3.
This resulted in a list of domain names which typically redirect to some landing

2In the original data set, median capacities are between 88 and 219 kBit/s, depending on the
scenario. As such, the median original capacities are often below the lowest representation bitrate
of our video and insufficient for loading our video workload. Thus, we scale the capacities in the
data set up to a factor of the lowest representation of our video workload.

3Our categories are: Search engines, News pages, shopping, social media, sports, arts and enter-
tainment, business, games, and science.

88

8.2 Workload

Table 8.2: Representation bitrates and resolutions.
Avg. bitrate (kbps) Resolution
RB BBB V RB BBB V

201 218 210 480x360 480x360 480x360
395 378 433 480x360 480x360 854x480
500 509 574 854x480 854x480 854x480
892 783 811 854x480 1280x720 1280x720
1498 1474 1422 1280x720 1280x720 1280x720
1992 2087 1861 1280x720 1920x1080 1440x1080
2996 3936 3523 1920x1080 1920x1080 1440x1080

page. Since such initial redirects inflate load times [60] we eliminated redirects by
manually loading each page once and then adding the resulting Uniform Resource
Locator (URL) to our hit list. For some sites, mainly social media sites, we find that
the resulting URL does not reflect actual user experience as the landing page we saw
consisted of only a few objects. For those, we picked an alternative publicly accessible
subpage of the same site, e.g., a publicly accessible social media profile.

Another difficulty we encountered is that the content of Web pages changes frequently,
even across consecutive page loads. Thus, we mirror all 102 Web pages in our work-
load4 to the Web server in our testbed5, see Section 8.1. This setup allows us to fetch
the same version for all these pages across experiments. When accessing Web pages
“in the wild”, we cannot enforce that the same version of a page is retrieved. Thus,
to ensure comparability of the results we only include those Web page loads in our
evaluation where the resulting resource count and page size differ by less than 1%
within the same run.

We opt for hosting Web pages on a dedicated server instead of using an emulator,
such as Mahimahi [77], which replays Web page loads on different emulated network
conditions on a single host. Our reasons are twofold: First, our testbed enables a
wider range of scenarios, e.g., realistic access network conditions using an actual WiFi
Access Point and cross-traffic. Second, we can compare loads of the mirrored version
to Web page loads “in the wild” given similar network conditions.

8.2.2 HAS

As different workload properties, such as different file size distributions, may influence
the effect of IANS on HAS performance, our study includes different workloads. For
comparability to prior work, we utilize a well-known HAS data set [78], from which
we select three videos of different genres: “Red Bull Playstreets” (RB) as a sports
video, “Big Buck Bunny” (BBB) as an animation movie, and “Valkaama” (V) as

4We mirrored pages on January 21, 2019. We load each page once, store all resources locally, and
copy them to our Web server. For each origin, i.e., each host that contributes content to the
original page, we create a virtual host on our server.

5Our Web server is equipped with 8 cores and 16 GB of RAM, similar to a 2xlarge Amazon EC2
instance and runs an Apache Web server.

89

Chapter 8 Impact of Informed Access Network Selection on Application Performance

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Segment size [MB]

EC
D

F

Rep. 1 (201 kBit/s)
Rep. 2 (395 kBit/s)
Rep. 3 (500 kBit/s)
Rep. 4 (892 kBit/s)
Rep. 5 (1498 kBit/s)
Rep. 6 (1992 kBit/s)
Rep. 7 (2996 kBit/s)

(a) “Red Bull Playstreets” (RB).

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Segment size [MB]

EC
D

F

Rep. 1 (218 kBit/s)
Rep. 2 (378 kBit/s)
Rep. 3 (509 kBit/s)
Rep. 4 (783 kBit/s)
Rep. 5 (1474 kBit/s)
Rep. 6 (2087 kBit/s)
Rep. 7 (3936 kBit/s)

(b) “Big Buck Bunny” (BBB).

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Segment size [MB]

EC
D

F

Rep. 1 (210 kBit/s)
Rep. 2 (433 kBit/s)
Rep. 3 (574 kBit/s)
Rep. 4 (811 kBit/s)
Rep. 5 (1422 kBit/s)
Rep. 6 (1861 kBit/s)
Rep. 7 (3523 kBit/s)

(c) “Valkaama” (V).

Figure 8.2: ECDFs of video segment sizes for different videos in our workload.

a live action movie. We choose videos of different genres as, even while using the
same video encoding algorithm, the amount of data to be transmitted varies due to
differences in content.

While these videos have overall durations of around 10 or around 90 minutes, we limit
our experiment workload to a fixed subsequence within each video, which simplifies
comparing results for different videos. In particular, we choose the first four minutes of
each video, as this duration lies within the application range of the P.1203 model [66]
(between 1 and 5 minutes), which we use to estimate the Quality of Experience (QoE).
Each video is split into video segments of a fixed length. While the data set includes
segment lengths of 1, 2, 4, 6, 10, and 15 seconds, we choose a segment length of 4
seconds, as it presents a good tradeoff between long and short segment lengths [78].
While shorter segment lengths introduce a higher overhead, longer segment lengths
lead to fewer opportunities to adapt to changing network conditions.

Each video is available in different representations, i.e., different screen resolutions
and target bitrates. From the 20 representations provided in the dataset for each
video, we select a subset, as too many available representations may lead to frequent
representation switches, thus, to QoE degradations.

We use seven representations for each workload, see Table 8.2, which correspond
to typical resolutions and bitrates used by commercial HAS providers [79]. Our
lowest chosen representation has a target bitrate of around 200 kBit/s with a screen
resolution of 480x360 pixels. Lower representations correspond to a very small screen
resolution, i.e., 320x240 pixels, compared to the display size of our client, which is
1920x1080. Loading a representation with such a small resolution leads to poor QoE
even if no stalling events occur. The highest representation we choose corresponds
to a high representation in the original workload which provides the same resolution
as the screen resolution of our client, 1920x1080. Loading this representation is
likely to provide a high QoE [65] and is still possible for network scenarios with high
downstream capacity, see Section 8.1.

We depict the video segment size distributions for the different videos and chosen
quality representations in Figure 8.2. For RB, the segment size distribution for each
representation remains rather constant with only minor deviations, see Figure 8.2a.
In contrast, segment sizes vary significantly for the other video workloads, particularly
for high quality representations, see Figure 8.2b and Figure 8.2c. Here, within the
same representation, some segments are much larger than others. As it is common to

90

8.3 Performance Metrics

estimate the segment size based on the average encoding bitrate, such a high spread
in segment sizes may lead to inaccurate estimates.

8.3 Performance Metrics

Web: To evaluate Web performance, we capture Page Load Time (PLT), which is the
time between the navigation start event and the onLoad event, as made available via
the Navigation Timings Application Programming Interface (API). Furthermore, we
capture Above-The-Fold time (ATF), the time taken to load all user-visible content,
using the plugin introduced by da Hora et al. [57]. Finally we compute the Mean
Opinion Score (MOS) using Byte Index until ATF based on the WQL model [80]:
MOS = −0.4731∗ln(ByteIndexATF)+7.0813. The Byte Index is computed based on
the resources contained in the HTTP Archive (HAR) file, which is exported after each
page load. For each resource loaded until ATF, we compute the integral of resource
size over resource load time, see Bocchi et al. [58]. To determine the resource size we
use the Content-Length header field, or, if not present, the body size as reported in
the HAR file.

HAS: To evaluate HAS performance, during playout of the video, we log initial play-
out delay, start and end timestamps for all segment loads, the representation level
at which each segment is played out, the buffer status and download rate based on
which the Adaptive Bit-Rate algorithm (ABR) has chosen to load this representa-
tion, and timestamps at which all frames were rendered. We compute the frequency
and duration of stalling events of the video playout both based on the download
timestamps of the segments and based on the render times of the frames. As the
render times indicate both stalling events due to long segment load times and stalling
events unrelated to network conditions, e.g., due to decoder delays in the player, in
our evaluation we use the stalling events based on download timestamps, which only
include stalling events due to long segment load times.

From the collected application layer metrics, we compute QoE estimates. To limit po-
tential biases of the used QoE model, we use two different models: ITU-T P.12036 [66,
67] and the Cumulative QoE Model (CQM)7 [81]. We compare the MOS values com-
puted using P.1203 to the MOS values computed using CQM at the end of each video
load and find we can draw the same conclusions based on both models. In particular,
the relative differences of the median MOS values for two different IANS policies or
scenarios are similar when using either P.1203 or CQM. This confirms that our results
are robust to the used QoE model. However, we note that the absolute MOS values
vary for the two models. Although we use the same audiovisual quality scores as input
to both P.1203 and CQM, we observe that the MOS scores computed using P.1203
are generally higher than using CQM by between 0.3 and 0.5. For example, while in
theory the MOS can range between 1 and 5, the highest MOS value we observe is 4.3

6We use the code provided at https://github.com/itu-p1203/itu-p1203 in mode 0.
7We use the code provided at https://github.com/TranHuyen1191/CQM with Tran’s Window quality

model.

91

https://github.com/itu-p1203/itu-p1203
https://github.com/TranHuyen1191/CQM

Chapter 8 Impact of Informed Access Network Selection on Application Performance

for P.1203 and 3.9 for CQM. In this case, the highest available representation with an
audiovisual score of about 4.1 is played out continuously and no stalling occurs. Here,
P.1203 slightly increases the final MOS score because there are no stalling events. In
contrast, CQM considers recent minimum, maximum, and average quality scores and
produces a slightly lower MOS.

8.4 Course of Experiments

Web: For our evaluation, we repeatedly load Web pages using different access net-
work selection policies. We instrument Firefox 63.0.4 via the Marionette browser
automation interface. To prevent skewed results due to browser caching, we set up
a fresh browser profile for each page load. To allow the browser to leverage IANS,
it uses a local Web proxy8 as discussed in Section 7.4.1. We compare the following
cases: Loading a page using only a single network, using both networks with MPTCP
with the primary subflow on the shorter latency network9, and using Socket Intents
with its Threshold Policy, see Section 6.3. We repeat each page load 5 times to
eliminate measurement artifacts.

HAS: We load the video in our workload using the IANS-enabled video player, see
Section 7.4.2.

As ABRs, we select BBA-0 [63] and BOLA [64]. We run experiments with different
ABRs to make our results less dependent on any particular ABR. While our workload
data set [78] is widely used, it does not include any audio. Thus, we emulate audio
by periodically loading a file of 100 KB in parallel to the video segments, which
corresponds to audio at a bitrate of 192 kBit/s with a duration of 4 seconds. We
compare the following access network selection policies to load the video segments:
Loading the video using only a single network, using MPTCP for all transfers, and
using three IANS policies: The Optimist Policy, see Section 6.4.2, the Pessimist
Policy, see Section 6.4.3, and the Selective MPTCP Policy, see Section 6.5.
For the audio segments, our IANS policies choose the network which is not currently
used for the video segments. This has the side effect of getting performance estimates
for these networks.

We run each experiment for a fixed duration because this allows us to directly com-
pare different experiment runs with each other: For the variable capacity scenarios,
downstream capacity varies over time according to the same pattern during each
video load, so each video load experiences the same changes in network conditions at
the same point in time during the experiment. Note that a fixed experiment duration

8We evaluate the overhead of the proxy by comparing PLTs with and without the proxy. We load
Web pages on network 1 without traffic shaping. PLTs with proxy increases by a median of
6.3%. There are two main reasons for this increase. First, the browser supports Transport Layer
Security (TLS) False Start, but OpenSSL, which the proxy uses, does not. Thus, the browser has
one fewer round trip for each TLS handshake than the proxy. Second, the Socket Intents-enabled
proxy uses a two-step download for querying the Size to be Received.

9We use the minRTT scheduler for MPTCP, which is the default on Linux.

92

8.5 Network Characteristics Feasibility Study

0 5000 10000 15000 20000

0
50

00
15

00
0

25
00

0

Shaped downstream rate [kBit/s]

O
bs

er
ve

d
do

w
nl

oa
d

m
ax

 ra
te

 [k
Bi

t/s
]

WiFi (No crosstraffic)
WiFi (50Mbit/s)
WiFi (90Mbit/s)
WiFi (150 Mbit/s)
WiFi (200 Mbit/s)
Wired

(a) Downstream capacity.

0 100 200 300 400 500 600 700

0
1
0
0

3
0
0

5
0
0

7
0
0

Shaped RTT [ms]

O
b
s
e
rv

e
d
 m

in
 s

rt
t
[m

s
]

WiFi (No crosstraffic)

WiFi (50Mbit/s)

WiFi (90Mbit/s)

WiFi (150 Mbit/s)

WiFi (200 Mbit/s)

Wired

(b) Minimum SRTT.

0 100 200 300 400 500 600 700

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Shaped RTT [ms]

O
b
s
e
rv

e
d
 m

e
d
ia

n
 s

rt
t
[m

s
]

Bandwidth between 100 and 250

Bandwidth between 500 and 1000

Bandwidth between 2000 and 2500

Bandwidth between 5000 and 8000

Bandwidth between 12000 and 15000

Bandwidth = 20000

(c) Median SRTT.

Figure 8.3: Estimated network performance characteristics against shaping

implies that we may load less content for experiments in which stalling occurs. We
fix our experiment duration at 240 seconds as this time is sufficient to load enough
video segments for our IANS policies to show effects, while the length of the played
out video content is within the application range of the P.1203 model [66]. To limit
possible biases due to comparing MOS values computed based on video content of
different durations, we only include video loads with between 120 and 240 seconds of
content in our results. We choose this duration as, when looking at the MOS values
over time computed using CQM, the relative differences between two video loads after
the first 120 seconds of content are usually similar to the differences after loading the
full 240 seconds. Furthermore, we look at MOS values computed using P.1203 based
on shorter content durations, i.e., for the first 120, 150, 180, and 210 seconds of con-
tent for each video load. For the cross-traffic scenarios, the results look identical to
MOS values based on 240 seconds of content. For the variable capacity scenarios, we
can draw the same conclusions based on MOS values for shorter content durations,
except for the capacity decrease scenario, in which shorter content durations do not
capture the decrease in capacity, and except for outliers due to artifacts in the P.1203
model. We repeat our experiment 5 times for each combination of scenario, policy,
and ABR. In our evaluation, we compute the median MOS with confidence intervals
of the median for each combination of scenario and policy, i.e., for up to 15 MOS
values.

8.5 Network Characteristics Feasibility Study

Before we evaluate the performance benefits of IANS for Web and HAS, we conduct a
feasibility study to check the accuracy of the network performance characteristics that
are available to our IANS policies. Hereby, we set up a wide range of different shaping
levels within our testbed and check the network performance estimates available to
IANS against them.

To demonstrate the feasibility of estimating network performance characteristics
within our prototype, we compare our measured network performance characteris-
tics with the actual shaped values in our testbed, see Section 8.1. We use a wide
range of typical network performance characteristics of both cellular and WiFi net-

93

Chapter 8 Impact of Informed Access Network Selection on Application Performance

Table 8.3: Shaping levels for feasibility study
Property Levels

Network 1 RTT: 60, 120, 180, 350, or 700 ms.
Network 1 upstream capacity: 0.05, 0.3, 0.7, 1.8, 3, or 5 Mbit/s.
Network 1 downstream capacity: 0.1, 0.5, 1, 2.5, 5, 15, or 20 Mbit/s.
Network 2 RTT: 20, 50, 100, 200, or 400 ms.
Network 2 upstream capacity: 0.1, 0.25, 0.5, 1, 2, 4, or 6 Mbit/s.
Network 2 downstream capacity: 0.25, 0.5, 2, 4, 8, 12 or 20 Mbit/s.
Network 2 packet loss: none, 0.1, 0.25, or 0.5%.
Network 2 cross-traffic: none, constant UDP flow of 50, 90, 150,

or 200 Mbit/s.

works [1], see Table 8.3. As the observed maximum downstream capacity depends on
the amount of traffic seen, our workload needs to saturate the downstream capacity
of the bottleneck link to get accurate results. To explore what traffic is needed to fill
the link, our client fetches static Web pages of increasing sizes: 32 objects of 1 KB,
32 objects of 10 KB, 8 objects of 100 KB, 2 objects of 1 MB, and 32 objects of 100
KB.

Figure 8.3 shows our three main network performance characteristics, maximum
downstream capacity, minimum Smoothed Round Trip Time (SRTT), and median
SRTT, compared to the shaper settings against which they were measured. Fig-
ure 8.3a shows the estimated maximum downstream capacity that the Multi Access
Manager (MAM) observes on the WiFi and wired links during the last page load in a
run, i.e., once the bottleneck link has been filled. Over the WiFi with no crosstraffic
and over the wired access network, the estimated maximum downstream capacity cor-
responds to the shaped downstream capacity in all cases except for 20 MBit/s. In the
latter case, the bottleneck link only gets saturated during the last page load, which
is why we see the estimated maximum downstream capacity increases during page
load as the bottleneck link gets saturated. At the end of the page load, the estimated
maximum downstream capacity has reached the full 20 MBit/s. With cross-traffic
on the WiFi, the estimated maximum downstream capacity varies around the shaped
rate due to random contention. When the page load collides with the crosstraffic, the
WiFi driver at the client will discard any affected frame, thus, the observed down-
stream capacity drops, as it only includes correctly received packets. Afterwards, the
WiFi Access Point will retransmit any lost frames on Layer 2, resulting in a temporar-
ily higher downstream capacity than what is shaped on the bottleneck link upstream
of the AP. To smooth out these irregularities, we introduce a moving average across
the last 10 samples and use the maximum of the moving averages as our maximum
downstream capacity estimate.

Figure 8.3b shows the minimum SRTTs seen by MAM for different shaped Round Trip
Times (RTTs)10 for all page loads. In most cases the minimum SRTT corresponds
to the shaped RTT. In the presence of high crosstraffic with either 150 Mbit/s or
200 Mbit/s constant UDP traffic on the wireless channel, the MAM sees a few outliers
in cases where all TCP connections are affected by the crosstraffic. However, we note
10We shape every RTT as symmetrical latencies on the up- and downlink.

94

8.5 Network Characteristics Feasibility Study

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10 100 500 2000
SRTT variation within connections

EC
D

F

No cross−traffic
UDP cross−traffic
TCP cross−traffic

(a) Variation within connections

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

10 100 5000 500000
SRTT variation among connections

EC
D

F

No cross−traffic
UDP cross−traffic
TCP cross−traffic

(b) Variation among connections

Figure 8.4: SRTT variations with cross-traffic.

that in most cases, the minimum SRTT observed by MAM is a good estimate for the
minimum SRTT that can be achieved on the path. Figure 8.3c shows the median of
the SRTTs that MAM observes for the current TCP connections for different shaped
downstream capacity limitations. As congestion on the path has a high impact on
the SRTTs of the connections, the observed values are considerably higher when a
large workload is fetched on a network with low downstream capacity. However, for
2 Mbit/s and higher, the observed median SRTTs are close to the shaped RTTs,
even with crosstraffic on the WiFi. We conclude that we can use the median SRTT
observed over a network as an estimate of the RTT that a download will experience
if it is scheduled on this network.

Figure 8.4 shows the SRTT variations for scenarios without cross-traffic, for constant
UDP cross-traffic on the wireless link of network 2, and for variable TCP cross-traffic
on the bottleneck of network 2. Figure 8.4a shows SRTT variations within single
connections for a network with a shaped RTT of 10 ms and a downstream capacity of
2 Mbit/s during all Web page loads in our Web evaluation. While the median of SRTT
variations is 43 ms without any cross-traffic, this median increases only sligthly with
UDP cross-traffic on the WiFi, i.e., to 47 ms. With variable TCP cross-traffic, the
median increases to 56 ms. Figure 8.4b shows SRTT variations among all concurrent
connections for a network with a shaped RTT of 100 ms and a downstream capacity
of 20 Mbit/s. While this variation is low without any cross-traffic, i.e., with a median
of 1.5 ms, with constant UDP cross-traffic on WiFi it increases to 267 ms and with
variable TCP cross-traffic on the bottleneck it increases to 3327 ms.

As SRTT variations within connections increase only slightly more than the shaped
RTT even for low capacities, it is too weak a signal for us to detect cross-traffic.
However, SRTT variation among connection varies by a multiple of the shaped RTT.
This signal is better suited to detect cross-traffic.

The observed channel utilization is in line with our expectations, i.e., it increases to
60-70% with cross-traffic on WiFi (plot not shown). As the prototype cannot estimate
downstream packet loss, but only upstream packet loss, which is not relevant to our
performance evaluation, we exclude loss from our feasibility study.

95

Chapter 8 Impact of Informed Access Network Selection on Application Performance

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.0 2.0 5.0 10.0 20.0 50.0
PLT [s]

EC
D

F

Only network 1
Only network 2
Only lower PLT network
MPTCP
IANS

(a) Empirical Cumulative Distribution Function
(ECDF) of Page Load Times (PLT)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.5 1.0 2.0 5.0 10.0 20.0 50.0
ATF [s]

EC
D

F

Only network 1
Only network 2
Only lower PLT network
MPTCP
IANS

(b) ECDF of Above-The-Fold Times (ATF)

Figure 8.5: Asymmetric scenario (network 1: 10 ms, 2 Mbit/s, network 2: 100ms, 20
Mbit/s)

8.6 IANS Benefits For Web Browsing

Next, we report on the benefits of IANS in a single scenario and in our systematic
study, in which we highlight under which network conditions it yields which bene-
fits.

8.6.1 Asymmetric Network Scenario: In-depth Discussion

We start our exploration by focusing on the asymmetric network scenario. Our
motivation for starting with this case is that here IANS should yield the biggest
benefits for Web performance. In particular, network 1 has a short latency of only
10 ms but a limited downstream capacity of 2 Mbit/s. Network 2 has a downstream
capacity of 20 Mbit/s but a latency of 100 ms.

Figure 8.5 shows the Web performance of all access network selection policies ac-
cording to two metrics, PLTs and ATFs, as ECDF across all 102 Web pages. IANS
outperforms all other access network selection policies for ATF and in almost all
cases for PLT. Only MPTCP can lead to shorter PLTs, see Figure 8.5a. When in-
vestigating the cause, we find that IANS, as intended, benefits from the asymmetric
network performance characteristics: Small resources benefit from the short laten-
cies of network 1, while large resources benefit from the high downstream capacity
of network 2. Since MPTCP distributes all resource loads across both networks, it
saturates the short latency network first. This leads to congestion on this network
which, in turn, inflates the load times of smaller resources. Thus, ATFs and PLTs
increase for MPTCP. IANS avoids unnecessary congestion on the short latency net-
work since it mainly uses the high downstream capacity network for retrieving large
resources. Furthermore, IANS yields a statistically significant improvement in MOS
(plot not shown) with a mean MOS difference of 0.11 compared to using the “better”
(lower PLT) of the two single networks, and of 0.07 compared to using MPTCP.

Using a single network (either network 1 or network 2) leads to the worst PLTs and
ATFs with a huge spread ranging from 0.7 seconds to more than 53 seconds. Using

96

8.6 IANS Benefits For Web Browsing

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500 1000 2000 5000 10000 20000 50000
ATF [ms]

E
C

D
F

Only network 1
Only network 2
MPTCP
IANS

(a) With constant UDP cross-traffic on network 2.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500 1000 2000 5000 10000 20000 50000
ATF [ms]

E
C

D
F

Only network 1
Only network 2
MPTCP
IANS

(b) With variable TCP cross-traffic on network 2
and its bottleneck.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500 1000 2000 5000 10000 20000 50000
ATF [s]

EC
D

F

Only network 1
Only network 2
MPTCP
IANS

(c) With variable TCP cross-traffic on network 2 and
its bottleneck, if network 2 is shaped at 10 ms
and 2 Mbit/s.

Figure 8.6: ECDF of Above-The-Fold Times for asymmetric scenario (network 1: 10
ms, 2 Mbit/s, network 2: 100ms, 20 Mbit/s)

the better of the two networks avoids some of the outliers; none of the page loads takes
longer than 20.4 seconds. Thus, in this scenario, there is no single “best” network to
use, as intended in our setup, see Section 8.1.

Adding cross-traffic results in slightly longer load times but does not change the gen-
eral observations, see Figure 8.6. IANS still outperforms using either single network
or using MPTCP and speedups vs. using a single access network are comparable to the
scenario without cross-traffic. Both for constant UDP cross-traffic, see Figure 8.6a,
and for variable TCP cross-traffic, see Figure 8.6b, ATFs when using only network 2
become slightly longer because the cross-traffic on network 2 results in longer load
times for some resources. Hereby, we see a higher impact for variable TCP cross-
traffic, because we place this traffic on both the WiFi network and the bottleneck
link. If we instead add variable cross-traffic to a network with short latency and low
downstream capacity, IANS still outperforms MPTCP, see Figure 8.6c. However, as
both IANS and MPTCP are sensitive to congestion on the lower latency network,
using only the network which does not have cross-traffic, becomes the better option.
Therefore, a future version of IANS should detect high congestion on a network and
then avoid loading resources over this network.

97

Chapter 8 Impact of Informed Access Network Selection on Application Performance

Downstream capacity shaped on both networks

La
te

nc
y

sh
ap

ed
 o

n
bo

th
 n

et
wo

rk
s

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

959 302 72 12

669 194 66 24

488 109.5 37 0

[746..1465] [225..547] [24..115] [0..33]

[569..1243] [128..311] [44..99] [0..41]

[334..920] [85..249] [0..75] [−8..22]

(a) IANS: Symmetric

Downstream capacity shaped on network 2
(Network 1 fixed at 2 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
2

(N
et

wo
rk

 1
 fi

xe
d

at
 1

0
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

959 124 −27 −40

502 418 141 143

1074 707 697 656

[746..1465] [54..281] [−60..0] [−59..−22]

[331..784] [306..498] [92..259] [61..213]

[761..1666] [567..989] [534..854] [542..829]

(b) IANS: Asymmetric, net-
work 1 fixed

Downstream capacity shaped on network 1
(Network 2 fixed at 20 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
1

(N
et

wo
rk

 2
 fi

xe
d

at
 1

00
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

656 48 −29 −3

438 181 3 −6

−214.5 −72 −20 0

[542..829] [−8..186] [−97..4] [−16..28]

[325..553] [81..395] [−18..26] [−30..12]

[−282..−166][−117..−20] [−58..0] [−8..22]

−500

0

500

1000

1500

(c) IANS: Asymmetric, network 2
fixed

Downstream capacity shaped on both networks

La
te

nc
y

sh
ap

ed
 o

n
bo

th
 n

et
wo

rk
s

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

1731 464 163.5 47

1219 425.5 176 85

1193 410 176 116

[1317..2368] [339..643] [77..252] [14..64]

[925..1683] [365..545] [134..236] [65..115]

[952..1852] [377..514] [148..279] [95..189]

(d) MPTCP: Symmetric

Downstream capacity shaped on network 2
(Network 1 fixed at 2 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
2

(N
et

wo
rk

 1
 fi

xe
d

at
 1

0
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

1731 65 −212.5 −325

1156 127 −376.5 −474

1060 264.5 −42 −3

[1317..2368] [−5..131] [−285..−163][−417..−238]

[954..1643] [52..294] [−522..−169][−670..−154]

[768..1688] [111..560] [−133..223] [−161..226]

(e) MPTCP: Asymmetric, net-
work 1 fixed

Downstream capacity shaped on network 1
(Network 2 fixed at 20 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
1

(N
et

wo
rk

 2
 fi

xe
d

at
 1

00
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

−3 158 9 −15

−415 238 97 13

−107 63 164 116

[−161..226] [75..271] [−28..44] [−55..3]

[−717..−20] [131..372] [44..141] [−3..48]

[−207..−59] [26..99] [120..213] [95..189]

−500

0

500

1000

1500

(f) MPTCP: Asymmetric, network
2 fixed

Figure 8.7: ATF improvements vs. using the single “better” network (median [ms]
plus confidence intervals).

Downstream capacity shaped on both networks

La
te

nc
y

sh
ap

ed
 o

n
bo

th
 n

et
wo

rk
s

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

1613 517 34 −1

1243 231 16.5 −34.5

1053 181.5 −9 −35

[1066..2103] [374..679] [−16..107] [−28..30]

[791..1633] [160..362] [2..58] [−68..−11]

[575..1477] [102..312] [−45..13] [−69..4]

(a) IANS: Symmetric

Downstream capacity shaped on network 2
(Network 1 fixed at 2 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
2

(N
et

wo
rk

 1
 fi

xe
d

at
 1

0
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

1613 155 −47 −57

928.5 457 269 210.5

1027 1024 808 881

[1066..2103] [77..280] [−100..−15] [−77..−28]

[736..1453] [376..550] [204..342] [151..266]

[644..1526] [858..1293] [650..979] [752..1244]

(b) IANS: Asymmetric, net-
work 1 fixed

Downstream capacity shaped on network 1
(Network 2 fixed at 20 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
1

(N
et

wo
rk

 2
 fi

xe
d

at
 1

00
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

881 −3 −190 −38.5

572 215 −76 −45

−423.5 −174 −106 −35

[752..1244] [−147..163] [−282..−57] [−75..−12]

[474..630] [50..342] [−127..−48] [−82..−24]

[−520..−353] [−251..−133] [−171..−74] [−69..4]

0

500

1000

1500

2000

2500

(c) IANS: Asymmetric, network 2
fixed

Downstream capacity shaped on both networks

La
te

nc
y

sh
ap

ed
 o

n
bo

th
 n

et
wo

rk
s

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

2731 633 142.5 8

1985 551 178.5 51

2130 518 212 113.5

[2097..3340] [419..905] [73..319] [−16..24]

[1631..2586] [433..685] [117..243] [24..80]

[1695..2536] [453..699] [161..294] [81..158]

(d) MPTCP: Symmetric

Downstream capacity shaped on network 2
(Network 1 fixed at 2 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
2

(N
et

wo
rk

 1
 fi

xe
d

at
 1

0
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

2731 143.5 −242.5 −333

1963 234 −292 −379

1696.5 577 307 245

[2097..3340] [49..269] [−282..−181] [−433..−233]

[1520..2344] [68..352] [−478..−116] [−578..−144]

[1228..2093] [446..710] [85..382] [28..407]

(e) MPTCP: Asymmetric, net-
work 1 fixed

Downstream capacity shaped on network 1
(Network 2 fixed at 20 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
1

(N
et

wo
rk

 2
 fi

xe
d

at
 1

00
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

245 112 27 −26

−201 296.5 85 23

−169 120 165 113.5

[28..407] [1..253] [−6..61] [−62..3]

[−551..−38] [193..375] [51..130] [−23..53]

[−287..−51] [80..149] [126..208] [81..158]

0

500

1000

1500

2000

2500

(f) MPTCP: Asymmetric, network
2 fixed

Figure 8.8: PLT improvements vs. using the single “better” network (median [ms]
plus confidence intervals).

98

8.6 IANS Benefits For Web Browsing

Downstream capacity shaped on both networks

La
te

nc
y

sh
ap

ed
 o

n
bo

th
 n

et
wo

rk
s

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

0.13 0.1 0.04 0.01

0.08 0.03 0.01 0

0.05 0.02 0 0

[0.11..0.16] [0.08..0.12] [0.02..0.06] [0.01..0.03]

[0.07..0.11] [0.03..0.05] [0.01..0.02] [0..0.01]

[0.04..0.06] [0.01..0.03] [0..0.01] [0..0.01]

(a) IANS: Symmetric

Downstream capacity shaped on network 2
(Network 1 fixed at 2 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
2

(N
et

wo
rk

 1
 fi

xe
d

at
 1

0
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

0.13 0.03 −0.02 −0.03

0.07 0.07 0.04 0.05

0.1 0.11 0.08 0.11

[0.11..0.16] [0.01..0.05] [−0.03..0] [−0.05..−0.02]

[0.05..0.1] [0.06..0.09] [0.04..0.06] [0.03..0.06]

[0.08..0.13] [0.1..0.12] [0.08..0.1] [0.09..0.12]

(b) IANS: Asymmetric, net-
work 1 fixed

Downstream capacity shaped on network 1
(Network 2 fixed at 20 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
1

(N
et

wo
rk

 2
 fi

xe
d

at
 1

00
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

0.11 0.02 0 0

0.06 0.04 0 −0.01

−0.04 −0.01 0 0

[0.09..0.12] [0..0.05] [−0.03..0.01] [−0.01..0.01]

[0.05..0.08] [0.02..0.06] [−0.01..0] [−0.01..0]

[−0.04..−0.02] [−0.01..0] [0..0] [0..0.01]

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

(c) IANS: Asymmetric, network 2
fixed

Downstream capacity shaped on both networks

La
te

nc
y

sh
ap

ed
 o

n
bo

th
 n

et
wo

rk
s

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

0.21 0.15 0.1 0.04

0.15 0.1 0.06 0.03

0.13 0.07 0.04 0.03

[0.2..0.23] [0.13..0.16] [0.08..0.12] [0.03..0.06]

[0.13..0.17] [0.08..0.11] [0.05..0.07] [0.03..0.04]

[0.12..0.15] [0.07..0.08] [0.03..0.05] [0.02..0.03]

(d) MPTCP: Symmetric

Downstream capacity shaped on network 2
(Network 1 fixed at 2 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
2

(N
et

wo
rk

 1
 fi

xe
d

at
 1

0
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

0.21 0.02 −0.07 −0.13

0.18 0.06 −0.03 −0.04

0.17 0.09 0.05 0.03

[0.2..0.23] [0.01..0.04] [−0.08..−0.05] [−0.16..−0.12]

[0.17..0.2] [0.04..0.07] [−0.05..−0.01] [−0.07..−0.01]

[0.15..0.2] [0.06..0.11] [0.02..0.08] [0.02..0.07]

(e) MPTCP: Asymmetric, net-
work 1 fixed

Downstream capacity shaped on network 1
(Network 2 fixed at 20 Mbit/s)

La
te

nc
y

sh
ap

ed
 o

n
ne

tw
or

k
1

(N
et

wo
rk

 2
 fi

xe
d

at
 1

00
m

s)

10ms

50ms

100ms

2Mbit/s 5Mbit/s 10Mbit/s 20Mbit/s

0.03 0.06 0.02 −0.01

0 0.06 0.02 0

−0.02 0.02 0.03 0.03

[0.02..0.07] [0.04..0.08] [0..0.03] [−0.01..0]

[−0.02..0.02] [0.05..0.07] [0.02..0.03] [0..0.01]

[−0.03..0] [0.01..0.03] [0.03..0.04] [0.02..0.03]

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

(f) MPTCP: Asymmetric, network
2 fixed

Figure 8.9: MOS improvements vs. using the single “better” network (median [ms]
plus confidence intervals).

8.6.2 Systematic Study of Scenarios

Next, we look at the results of the systematic study of 33 network scenarios11 with
latencies of 10, 50, or 100 ms and downstream capacities of 2, 5, 10, or 20 Mbit/s
for both access networks. Rather than using 33 ECDFs to visualize the results, we
show, using heatmaps, the median ATF improvement of IANS and MPTCP vs. the
“best” single network (according to PLT), see Figure 8.7. Note, the results for PLT
and MOS show similar results, see Figure 8.8 and 8.9. Each subplot focuses on a
different scenario, namely, Figure 8.7a and 8.7d on access networks with symmetric
network conditions, Figure 8.7b and 8.7e on access networks with asymmetric con-
ditions where network 1’s characteristics do not change and Figure 8.7c and 8.7f on
access networks with asymmetric conditions where network 2’s characteristics do not
change. The color schema (same for all plots) goes from green for large performance
improvements over light yellow for no significant differences to violet for large perfor-
mance penalties. Each heatmap entry contains the median ATF improvement in ms
and the corresponding confidence intervals.

Overall, green which corresponds to significant improvements dominates the results
for IANS and MPTCP. However, red and violet are more common for MPTCP. Yellow
dominates if the downstream capacity is large for both networks. Note, that the size
of the confidence intervals can be large, i.e., hundreds of milliseconds, as load times
fluctuate between page loads. Some of these effects are due to influences unrelated to
networking, such as in-browser processing, and different orders in which the browser
11Each scenario corresponds to a combination of latencies and downstream capacities on both net-

works in our Web browsing experiments, see Table 8.2a.

99

Chapter 8 Impact of Informed Access Network Selection on Application Performance

may load the resources. Other effects are related to the multitude of different Web
pages and that the Web page load times range from less than a second to more than
20 seconds.

IANS shows the largest speedups in asymmetric scenarios, see Figure 8.7b and 8.7c,
similar to the one discussed Section 8.6.1. For MPTCP, this is not always the case,
see Figure 8.7e and 8.7f. The reason is that IANS (for the 10/100 ms latency case) in
contrast to MPTCP can indeed load small/large resource over the short latency/high
downstream capacity network while MPTCP tends to use both and, thus, may suffer
from head-of-line blocking and congestion on the low downstream capacity network.

Even for less asymmetric scenarios (10/50 ms, 50/100 ms latency) IANS still improves
ATFs over MPTCP, see Figure 8.7b and 8.7e. MPTCP saturates network 1 (the lower
latency one) first, which, again, leads to congestion on network 1 and inefficient use
of the high downstream capacity of network 2. MPTCP still degrades ATF if both
networks have the same short latency (10ms), but asymmetric downstream capacities
(2/10 Mbit/s or 2/20 Mbit/s), see Figure 8.7e. Since network 2 is the WiFi network,
it adds delay and, thus, MPTCP will again saturate the lower latency one rather
than taking advantage of the higher downstream capacity one.

For symmetric scenarios with low downstream capacities IANS again shows signifi-
cant ATF improvements, see Figure 8.7a. Here, both networks should be used, so
IANS’s capability of distributing resource loads across the networks improves resource
load times and, thus, PLT and ATF. Speedups increase as latencies decrease due to
less per-connection overhead. For purely symmetric scenarios, MPTCP outperforms
IANS, see Figure 8.7d, as MPTCP is able to use the bundled network downstream
capacity at a finer granularity by using subflows. Thus, if a page’s resources are
skewed, i.e., have one large resource, MPTCP can efficiently use both networks while
IANS cannot.

In scenarios with high downstream capacity, e.g., Figure 8.7a and 8.7d neither IANS
nor MPTCP yields major benefits as a single access network already provides suffi-
cient network resources. Still, MPTCP is slightly better than IANS since it is able
to reuse all TCP connections. However, future versions of IANS could detect such
network conditions and then default to MPTCP. With cross-traffic on network 2, us-
ing MPTCP remains the best option in most cases. However, using only network 1,
which is not impacted by cross-traffic, is even better in case network 1 has sufficient
downstream capacity. Therefore, enabling MPTCP only selectively using IANS may
have an advantage over using MPTCP in all scenarios.

One scenario, see Figure 8.7c and Figure 8.7f upper left corner, stands out, since
both IANS and MPTCP show rather large performance penalties. Here, both access
networks have a long latency (100 ms) and the downstream capacities are asymmetric
(2/20 Mbit/s). Per se, using network 2 only is the best option. However, both IANS
and MPTCP use network 1 as well, as its latency is lower than network 2’s due to the
WiFi overhead. By using network 1 IANS incurs extra cost due to TCP connection
overhead and both IANS and MPTCP degrade performance due to the imposed
congestion on network 1. Moreover, IANS cannot reuse existing TCP connections

100

8.6 IANS Benefits For Web Browsing

0 5 10 15 20

0
2

4
6

8
10

12

Best achieved PLT speedup [s] using IANS compared to a single network

Pa
ge

 s
ize

 [M
B]

Figure 8.10: Symmetric scenario with 10ms, 2Mbit/s.

on a different network. Thus, in the future, IANS should account for connection
establishment overhead and congestion even more.

Summary of systematic study: Our most important findings are: 1.) IANS
improves Web performance the most for asymmetric scenarios and for symmetric
scenarios with low downstream capacity. 2.) For asymmetric scenarios IANS often
outperforms MPTCP. Indeed, MPTCP may introduce a performance penalty even
compared to using a single network only. 3.) In symmetric scenarios, using MPTCP
helps the most. Thus, IANS should take advantage of MPTCP for such cases.

8.6.3 Performance Benefits For Different Web Pages

Next, we take a closer look at Web page properties and check to which extent they
correlate with the observed speedups. The most obvious property is Web page size12.
Thus, Figure 8.10 shows a scatter plot of the Web page size vs. the best achieved
PLT speedup13 for one of the symmetric scenarios (10 ms and 2 Mbit/s). Note, there
is a strong correlation. Almost all points fall on the diagonal. Thus, the Pearson
correlation coefficient with 0.978 is also close to the perfect one. For MOS we see
some improvements as well but not a strict correlation, which is not surprising given
that MOS uses a logarithmic scale. Still, IANS, e.g., improves a “bad” MOS’ (< 2.5)
to an “acceptable” MOS (> 2.5) for 10% of the Web pages.

We find similar strong correlations between Web page size and PLT for almost all
symmetric scenarios, see Table 8.4. Note, correlation decreases with larger down-
stream network capacities. This is not surprising since as we pointed out above, the
best options for such scenarios is using a single network. When considering Web
pages of different categories, see Section 8.2.1, we find that “Gaming” Web pages are
often larger, so they show more significant speedups than, e.g., smaller Web pages
from the “Search Engine” category.

12The Web page size is the sum of all resource sizes from one page load. In our workload, Web page
sizes range from 64 KB to 12.5 MB.

13The plot for ATF is similar but contains one outlier due to a failure of the plugin which exports
ATF.

101

Chapter 8 Impact of Informed Access Network Selection on Application Performance

Table 8.4: Pearson coefficient between page size and best achieved PLT speedup:
Symmetric scenarios

Latency
Capacity 2 Mbit/s 5 Mbit/s 10 Mbit/s 20 Mbit/s

10ms 0.978 0.943 0.923 0.764

50 ms 0.953 0.920 0.847 0.367

100 ms 0.974 0.956 0.589 0.232

We do not find strong correlations for other Web page properties including resource
count14, and median resource size15. The largest Pearson correlation coefficients
for resource count/median resource size are 0.517/0.541 for the symmetric scenario
(10 ms and 2 Mbit/s).

For asymmetric scenarios, we see correlations between page size and PLT when the
downstream capacity is low for both networks (Pearson coefficients greater than 0.8).
Otherwise, there is no strong correlation with page size as the benefits of downstream
capacity bundling decreases. There is also no strong correlation with resource count
or median resource size.

Still, IANS shows improved performance, recall Section 8.6.1. The reason is that
IANS provides multiple opportunities for speedups: On the one hand, IANS provides
benefits for large Web pages and those with many large resources. On the other
hand, IANS realizes speedups for small pages with a few “large” resources16, which
benefit from the high downstream capacity network, and many “small” resources17,
which benefit from the short latency network. Moreover, distributing resources avoids
congestion on the lower latency network. This is where IANS shows an advantage
over MPTCP.

IANS cannot speed up Web page loads where the page exclusively consists of small
resources since using a single short latency access network while reusing the TCP
connections is the best option. Moreover, IANS does not provide much benefit if
the Web page consists of many “small” and few large resources, e.g., a single large
resource. In such cases, scheduling the large resource on the large downstream ca-
pacity network may not always be beneficial due to its delay and the corresponding
connection establishment overhead.

102

8.6 IANS Benefits For Web Browsing

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.0 2.0 5.0 10.0 20.0 50.0
ATF [s]

EC
D

F

Only network 1
Only network 2
MPTCP
IANS

(a) Asymmetric scenario.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.0 2.0 5.0 10.0 20.0 50.0
ATF [s]

EC
D

F

Only network 1
Only network 2
MPTCP
IANS

(b) Symmetric scenario.

Figure 8.11: “In the wild”: ECDFs of Above-The-Fold Times (ATF)

8.6.4 Performance In The Wild

To confirm that the performance benefits do not just apply to controlled testbed
settings with mirrored Web pages, we load the same pages from their servers “in
the wild”, recall Section 8.1. Figure 8.11a shows the ECDFs for the ATFs18 for the
asymmetric network scenario (network 1: 10 ms and 2 Mbit, network 2: 100 ms and
20 Mbit) first discussed in Section 8.6.1. As before IANS outperforms either of the
two single networks as well as MPTCP. Indeed, MPTCP is much worse and close to
using only the low downstream capacity network for most Web pages. The reason
is that most Web servers “in the wild” do not support MPTCP: Only three out the
of 102 Web pages in our workload partially support MPTCP—we see at least one
successfully established subflow with an MPTCP option. Note, even for these not all
involved Web servers did support MPTCP. Without server-sided MPTCP support,
MPTCP establishes the primary subflow over the lower latency network, i.e., network
1, and suffers from its low downstream capacity. Thus, the fact that MPTCP needs
server-sided support limits the performance benefits that it can achieve in the wild.
Since IANS does not need any server-sided support IANS can provide similar benefits
in the wild as in the testbed.

Figure 8.11b shows the ECDF for the ATF for a symmetric network scenario (10
ms and 2 Mbit/s). Again MPTCP does not provide any benefits compared to using
a single network as most servers do not yet support MPTCP. Here, even though
MPTCP outperforms IANS in the testbed, see Section 8.6.2, IANS in the wild cur-
rently outperforms MPTCP (due to its limited deployment) as well as only using a
single network.

In summary, our experiments using Web servers “in the wild” confirm IANS’s per-
formance benefits. Furthermore, they highlight that MPTCP, due to its limited
14Resource count is the number of successful HyperText Transfer Protocol (HTTP) requests (status

code other than 4xx or 5xx) as observed from the HAR file exported during page load. In our
workload, resource count ranges from 10 to 314, with a median of 73.

15In our workload, the median of all resource sizes loaded for a single page ranges from 300 B to 79
KB.

16We define “large” as greater than the 95th quantile of all resource sizes, which is 133 KB.
17We define “small” resources as those smaller than overall median resource size, which is 7.7 KB.
18PLT and MOS again show similar effects.

103

Chapter 8 Impact of Informed Access Network Selection on Application Performance

0 50 100 150 200

0
20

0
40

0
60

0

Time [s]

D
ow

ns
tre

am
 c

ap
ac

ity
 [k

Bi
t/s

]

network 1
network 2

(a) Shaped downstream capacity.

M
ea

n
pe

rc
en

ta
ge

 o
f s

eg
m

en
ts

 s
ta

lle
d

[%
]

0

5

10

15

20

25

BBA−0 BOLA_BASIC BOLA_O

Only network 1 (constant)
Only network 2 (variable)
MPTCP
IANS (Selective MPTCP)
IANS (Optimist)
IANS (Pessimist)

(b) Percentage of video segments stalled (mean with con-
fidence intervals).

M
ea

n
re

pr
es

en
ta

tio
n

pl
ay

ed
 o

ut

0

1

2

3

4

BBA−0 BOLA_BASIC BOLA_O

Only network 1 (constant)
Only network 2 (variable)
MPTCP
IANS (Selective MPTCP)
IANS (Optimist)
IANS (Pessimist)

(c) Loaded Representations (mean with confidence
intervals).

M
ed

ia
n

M
O

S

0.0

0.5

1.0

1.5

2.0

2.5

BBA−0 BOLA_BASIC BOLA_O

Only network 1 (constant)
Only network 2 (variable)
MPTCP
IANS (Selective MPTCP)
IANS (Optimist)
IANS (Pessimist)

(d) QoE (median MOS with confidence intervals).

Figure 8.12: Capacity decrease scenario (median downstream capacity 327 kBit/s,
downstream capacity on network 2 varies with cv = 0.7).

deployment, often cannot provide the expected performance benefits in practice and
may even degrade performance.

8.7 IANS Benefits For Video Streaming

Next, we evaluate the benefits of IANS for video performance in a scenario with
decreasing capacity and in our systematic study. First, we compare the benefits of
different IANS policies, all of which use the same Socket Intents, depending on the
downstream capacity and downstream capacity variation pattern. Then, we comple-
ment this study by a discussion of scenarios with constant downstream capacity, but
with variable cross-traffic.

8.7.1 Capacity Decrease Scenario: In-Depth Discussion

First, we focus on a scenario with decreasing downstream capacity for network 2 and
constant downstream capacity for network 1, using the “Big Buck Bunny” workload.
Our motivation for starting with this case is that IANS should yield high benefits as
it is downstream capacity aware and should, thus, always use the higher downstream

104

8.7 IANS Benefits For Video Streaming

capacity network. Here, we focus on how the Optimist Policy and Pessimist Pol-
icy adapt to the downstream capacity changes and whether the Selective MPTCP
Policy can provide any benefits compared to using MPTCP for all segments. Fig-
ure 8.12 shows details of our experiment setup and our results.

In our experiment, we shape downstream capacities according to Figure 8.12a, i.e.,
network 1 provides a constant downstream capacity of 327 kBit/s throughout the
experiment, while the downstream capacity on network 2 varies around the same
median capacity according to the “metro” trace [76]. As 327 kBit/s is 1.5 times
the bitrate of the lowest representation of our animation video, network 1 provides
enough downstream capacity to load the lowest representation at all times. Network 2
initially provides more downstream capacity, i.e., between 350 and 600 kBit/s, which
allows loading video segments using a higher representation. However, after around
150 seconds, the downstream capacity of network 2 decreases to between 30 and
60 kBit/s, so using network 2 leads to stalling even for the lowest representation.
Here, the end-user device which created the original trace entered a tunnel, leading
to a drastic decrease in signal strength. Due to these drastic changes in downstream
capacity, the coefficient of variation (cv) for this scenario is high, i.e., 0.7.

Figure 8.12b shows the percentage of stalled segments, i.e., segments with long load
times which resulted in stalling of the playout. Here, IANS recognizes the decreased
downstream capacity on network 2 and, therefore, uses only network 1 after down-
stream capacity decreases. Stalling may still occur in cases where the downstream
capacity decreases at the same time at which the IANS policy decides which net-
work to use for a transfer, therefore, IANS cannot detect the downstream capacity
change for this transfer yet. In contrast, MPTCP continues to use both network 1
and network 2 for all transfers, which leads to stalling for all segments loaded after
the capacity decrease. This leads to a mean stalling percentage of about 20% of
segments for MPTCP because it is able to load about 10 more segments after the
capacity decrease, all of which stall the playout. In contrast, network 2 is only able to
load 3 more segments during the remainder of the experiment due to very long load
times, which results in a lower overall percentage of stalled segments around 5 to 15%.
Note, there is an interaction between access network selection policy and ABR. Using
different ABRs leads to different stalling percentages. However, for all ABRs used in
our experiments, we observe similar overall QoE and stalling percentages per scenario
and access network selection policy.

While stalling is important for QoE, which representation of the video is retrieved
also plays a role. Figure 8.12c shows the mean of the loaded representations in
the Capacity Decrease scenario for all ABRs and access network selection policies.
Here, using only network 1 leads to loading the lowest representation, 0, for most
segments, as network 1 provides an insufficient downstream capacity to load a higher
representation. As MPTCP can aggregate the downstream capacity of network 1
and network 2, using MPTCP leads to loading a higher representation for all ABRs.
IANS yields a higher mean representation than any single network, but a lower mean
representation than MPTCP because they use a single network for many segment
loads.

105

Chapter 8 Impact of Informed Access Network Selection on Application Performance

Shaped median downstream capacity [kBit/s]

Po
lic

y

Only network 1
 (constant)

Only network 2
(variable)

MPTCP

IANS
(Selective MPTCP)

IANS
(Optimist)

IANS
(Pessimist)

218 327 436 545 872 1090 2180

1.3 2.2 2.2 2.7 3.3 3.5 4.1

1.6 1.7 1.9 1.9 1.9 1.9 2.6

1.6 1.7 2 2.4 2.9 3.1 4.2

2 2.3 2.6 2.6 3.3 3.7 4.2

1.8 2 2.2 2.2 2.5 2.5 2.7

2.2 2.3 2.6 3.1 3.4 3.5 4.2

[1.3..1.3] [2.2..2.2] [2.1..2.3] [2.5..2.9] [3.1..3.3] [3.4..3.5] [4.1..4.3]

[1.5..1.7] [1.7..1.7] [1.8..1.9] [1.8..2.2] [1.9..2] [1.8..1.9] [2.5..2.8]

[1.5..1.6] [1.7..1.8] [1.9..2.1] [2..2.7] [2.6..3.2] [2.8..3.3] [4..4.3]

[1.9..2] [2.3..2.4] [2.4..2.7] [2.3..2.8] [3.2..3.5] [2.6..3.8] [3.8..4.2]

[1.8..1.9] [1.9..2] [2.1..2.3] [2.2..3] [2.4..2.5] [2.4..2.5] [2.7..2.8]

[1.9..2.2] [2.3..2.4] [2.5..2.7] [3..3.3] [3.2..3.5] [3.3..3.5] [4.1..4.3]

(a) RB.
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2.1 2.1 2.5 4 3.8 4.3

1.5 1.7 1.9 1.9 1.9 1.9 2.6

1.6 1.6 1.9 2.2 2.9 3.3 4.1

1.6 2.4 2.8 2.3 3.8 2.8 4.1

1.7 2 2.2 2.4 2.5 2.4 2.9

1.7 2.1 2.3 3.1 3.8 3.9 4.3

[1.3..1.3] [2..2.1] [1.4..2.3] [1.7..2.6] [3.8..4] [3.8..4.2] [4.1..4.4]

[1.4..1.5] [1.7..1.8] [1.8..1.9] [1.4..2] [1.9..2.3] [1.8..1.9] [2.5..2.9]

[1.5..1.6] [1.6..1.7] [1.8..2.3] [2..2.4] [2.8..3.1] [3..3.8] [4.1..4.3]

[1.6..1.7] [2.3..2.5] [2.5..2.8] [2.2..2.9] [3.2..4.1] [2.5..4] [3.4..4.3]

[1.6..1.8] [1.9..2] [2.2..2.3] [2.3..2.4] [2.5..3.1] [2.4..2.5] [2.6..3.1]

[1.6..2] [2.1..2.4] [1.7..2.6] [2.9..3.2] [3.7..4.2] [3.8..4.2] [4.1..4.4]

(b) BBB.
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2.2 1.6 3 3.9 4 4.3

1.6 1.8 1.9 1.9 2 1.9 2.6

1.6 1.8 2.1 2.5 3.2 3.6 4.3

1.9 2.5 2.8 2.8 4 3.8 4.3

1.6 2.1 2.2 2.3 2.5 2.6 2.7

1.9 2.5 3 3.4 4 4.1 4.2

[1.3..1.3] [2.1..2.3] [1.5..2.6] [2.9..3.3] [3.9..4.1] [3.9..4.2] [4.3..4.4]

[1.5..1.6] [1.8..1.9] [1.4..2] [1.9..2] [1.9..2.2] [1.8..1.9] [2.6..2.9]

[1.6..1.7] [1.7..2.2] [1.9..2.3] [2.2..2.8] [2.6..3.5] [3.3..3.8] [3.8..4.4]

[1.9..2] [2.4..2.7] [2.6..3] [2.2..3.2] [2.8..4] [3.1..4.2] [4.2..4.4]

[1.5..1.9] [2.1..2.1] [2.2..2.3] [2.3..2.4] [2.5..2.7] [2.5..2.7] [2.6..2.9]

[1.7..2.2] [2.2..2.7] [3..3.1] [2.9..3.4] [3.8..4.2] [3.8..4.1] [3.5..4.4]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(c) V.

Figure 8.13: Median MOS with confidence intervals for scaled Capacity Decrease sce-
narios (cv =0.7).

Combining the stalling events and the representations, as well as other factors such
as the frequency of representation switches, Figure 8.12d shows the QoE as Mean
Opinion Score (MOS) computed using the ITU-T P.1203 model for all access net-
work selection policies and ABRs. Here, the Pessimist Policy and the Selective
MPTCP Policy outperform the other access network selection policies by providing
an “acceptable” MOS of more than 2, as opposed to a “bad” MOS of below 2. The
QoE is higher because both the Pessimist Policy and the Selective MPTCP
Policy reduce stalling events by recognizing the decreased downstream capacity on
network 2 and, therefore, by only using network 1 after downstream capacity de-
creases. In contrast, MPTCP continues to use both network 1 and network 2 for all
transfers, which leads to stalling, recall Figure 8.12b and, therefore, a bad MOS. We
note that, for BBA-0, the Pessimist Policy provides bad QoE in one case due to
too frequent switches between representations19. While we see this effect here only
for BBA-0, we see the same effect for other ABRs in other scenarios. The Optimist
Policy achieves a QoE similar to using only network 1: While it allows higher rep-
resentations of the video to be loaded, it still sees several stalling events. We find
that these stalling events occur because, after, the downstream capacity on network 2
decreases, the Optimist Policy attempts to use network 2 for every fourth segment
because of its “best-case” load time estimate due to the high downstream capacity
the Optimist Policy has seen in the past.

Summary of single scenario: IANS can detect a persistent decrease in downstream
capacity and use a network with a more stable downstream capacity, thus, reduce
stalling and improve QoE. In particular, the Pessimist Policy and the Selective
MPTCP Policy provide good results for the Capacity Decrease scenario.

8.7.2 Systematic Study of Variable Capacity Scenarios

Next, we present the results of our systematic study of scenarios with variable capac-
ity, in which we keep the downstream capacity on network 1 constant and vary the
downstream capacity on network 2 during each run, recall Table 8.2b. In total, our
19The P.1203 model penalizes the MOS if the ABR never remains with the same representation for

30 seconds or more during the duration of the experiment (240 seconds).

106

8.7 IANS Benefits For Video Streaming

study consists of 42 variable capacity scenarios, whereby each scenario corresponds
to a combination of median downstream capacity and capacity variation pattern. For
each scenario, we show the QoE achieved by different access network selection policies
using heatmaps, see Figure 8.13 for the Capacity Decrease scenario scaled to differ-
ent median downstream capacities and Figure 8.14 for all other scenarios. While the
Capacity Decrease scenarios and the Train scenarios have a high cv of 0.6 and 0.7,
the Ferry scenarios and the Car scenarios have a medium cv of around 0.5, and the
Bus scenarios as well as the Tram scenarios have the lowest cv of around 0.3.

Each subplot refers to all scenarios with the same capacity variation pattern, whereby
we scale the median downstream capacities. Within each subplot, each column corre-
sponds to a single scenario and shows the achieved QoE for different access network
selection policies. Hereby, IANS policies are displayed at the top and results for
using only a single network or using MPTCP for all transfers are displayed below.
Each heatmap entry shows the QoE as MOS values computed using the ITU-T P.1203
model. Since the different ABRs often yield a similar QoE, we show the median MOS
for all ABRs for the same scenario and access network selection policy. Furthermore,
each heatmap entry contains the median and the corresponding confidence interval.
Note, the size of the confidence interval can be large, i.e., with MOS differences of
more than 1, because for some video loads, the P.1203 model penalizes the computed
MOS due to frequent representation switches20. The color schema (same for all plots)
ranges from violet and red for MOS values below 2 over light yellow for MOS values
between 2 and 2.5 to green for MOS values of 2.5 or more.

Overall, in Figure 8.13, green dominates the results for IANS and for scenarios with
high downstream capacities, whereas red and violet are more common for using a sin-
gle network and for low downstream capacities. In Figure 8.14, green also dominates
for MPTCP.

For the RB video in the Capacity Decrease scenarios, shown in Figure 8.13a, IANS
yields MOS improvements for scenarios with low downstream capacities, i.e., of
545 kBit/s or less. For the scenario with a median capacity of 218 kBit/s, both the
Pessimist Policy and the Selective MPTCP Policy provide a median MOS
of 2 or more for RB, while a single network and MPTCP yield a MOS of 1.6 or less.
While MPTCP hurts performance due to stalling, IANS is able to improve the MOS
because it is aware of downstream capacity changes, e.g., the decrease in downstream
capacity on network 2. Therefore, IANS loads video segments over the higher down-
stream capacity network 1, which reduces stalling events or avoids stalls entirely, as
seen previously in Section 8.7.1.

For the BBB video, see Figure 8.13b, IANS leads to worse performance than RB
for the lowest downstream capacity scenario with a median downstream capacity of
218 kBit/s. This is because BBB’s lowest representation has a slightly higher bi-
trate than RB, so there is insufficient capacity to load even the lowest representation
20In particular, we find that P.1203 heavily penalizes playouts in which the played out represen-

tation changes more frequently than every 30 seconds even for cases in which two playouts are
otherwise identical, i.e., they include the same number of stalling events and similar played out
representations.

107

Chapter 8 Impact of Informed Access Network Selection on Application Performance

without stalling. For scenarios with downstream capacities between 327 kBit/s and
545 kBit/s, similar to RB, both the Pessimist Policy and the Selective MPTCP
Policy are able to select a network with sufficient downstream capacity and, there-
fore, improve the MOS compared to using a single network or MPTCP. Surprisingly,
for BBB, the Selective MPTCP Policy performs worse for 545 and 1090 kBit/s
than for 436 and 872 kBit/s because stalling events occur for the former cases. Here,
the Selective MPTCP Policy enabled MPTCP based on the assumption that
sufficient capacity is available for the selected representation bitrate, however, the
loaded video segment was unusually large. This occurs only for BBB, as BBB has
the highest spread in video segment sizes, recall Figure 8.2b. Future work may fine-
tune the Selective MPTCP Policy for such workloads. Results for V are similar
to RB, see Figure 8.13c, except for a low MOS score for the 436 kBit/s scenario and
network 1. Here, we see an interaction between the shaped capacity and the repre-
sentations’ segment sizes for this particular video, which causes the ABR to switch
representations frequently, which causes P.1203 to penalize MOS.

For the “Train” scenarios, shown in Figure 8.14a, both the Selective MPTCP
Policy and using MPTCP outperform using a single network, e.g., they improve a
MOS of 2.2 using either single network to a MOS of 3. Here, the Optimist Policy
and Pessimist Policy are able to only slightly improve QoE, as they can only use
the better single network. For the RB workload, using the better single network does
not result in switching to a higher quality representation, which would be required
to provide a better QoE as seen using MPTCP. However, for the BBB workload, see
Figure 8.14b, and for the V workload, see Figure 8.14c, we do see an increased MOS
for the Optimist Policy and Pessimist Policy. For these workloads, selecting
the better single network prevents stalling and allows switching to a higher bitrate
representation.

For the “Ferry” scenarios, see Figure 8.14d, ever for RB, all IANS policies outperform
using either single network, e.g., improving a MOS of 2.2 or 1.9 on network 1 or
network 2 to a MOS of 2.7 or 2.6 using the Optimist Policy and Pessimist Policy
or even 2.9 using the Selective MPTCP Policy. Here, MPTCP yields similar
MOS improvements as the Selective MPTCP Policy, as there is always sufficient
capacity available to use MPTCP. For BBB, see Figure 8.14e, we again see low MOS
values for the Optimist Policy and the Pessimist Policy for the 218 kBit/s
scenario, as these policies can only select between the two single networks, which both
provide insufficient downstream capacity to load even the lowest representation. For
scenarios with capacities between 327 kBit/s and 545 kBit/s, IANS yields even higher
MOS improvements for BBB than for RB. At 872 kBit/s and above, the Optimist
Policy and Pessimist Policy yield a similar performance as using network 1, and
only the Selective MPTCP Policy or MPTCP are able to improve performance.
Finally, V generally yields similar results as RB and BBB, see Figure 8.14f. Again, we
see a few cases of interactions between the workload representation and the shaped
capacity, similar to the Capacity Decrease scenario. Results for the “Car”, “Bus”, and
“Tram” scenarios, see Figure 8.14g through Figure 8.14o, are similar to the “Ferry”
scenario.

108

8.7 IANS Benefits For Video Streaming

Shaped median downstream capacity [kBit/s]

Po
lic

y

Only network 1
 (constant)

Only network 2
(variable)

MPTCP

IANS
(Selective MPTCP)

IANS
(Optimist)

IANS
(Pessimist)

218 327 436 545 872 1090 2180

1.3 2.2 2.2 2.6 3.1 3.5 4.1

1.3 1.8 2.2 2.3 3 3.3 4

2.1 2.5 3 3.1 3.6 3.9 4.2

2 2.5 3 3.1 3.6 4 4.2

1.5 2.1 2.3 2.5 3.3 3.5 4.1

1.5 2.2 2.3 2.6 3.3 3.5 4.1

[1.3..1.3] [2.2..2.2] [2.1..2.3] [1.5..2.8] [3.1..3.3] [3.4..3.5] [4.1..4.3]

[1.3..1.3] [1.8..1.8] [2.1..2.2] [2.2..2.3] [2.9..3] [3.2..3.4] [3.9..4.1]

[2..2.1] [2.3..2.7] [2.9..3.1] [3..3.2] [3.4..3.9] [3.9..4.1] [4.2..4.2]

[2..2.1] [2.3..2.6] [2.6..3.2] [2.9..3.1] [2.5..3.9] [3.4..4.1] [4.2..4.3]

[1.5..1.6] [2.1..2.3] [2.2..2.3] [2.5..2.6] [3.1..3.4] [3.4..3.7] [4..4.1]

[1.4..1.5] [2.1..2.4] [2.2..2.4] [2.5..2.9] [3.2..3.5] [3.2..3.5] [4.1..4.3]

(a) RB, Train (cv =0.6).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2 2.1 2.5 4 3.9 4.3

1.3 1.6 2 2.3 3.1 3.4 4.2

1.9 2.4 3.1 3.5 4.1 4.1 4.1

1.9 2.4 2.9 3.2 3.7 4.2 4.3

1.4 2 2.3 2.7 3.2 3.5 4.2

1.4 2.1 2.4 2.7 3.6 3.8 4.2

[1.3..1.3] [2..2.1] [1.9..2.3] [1.7..2.6] [3.7..4] [3.7..4.2] [4.2..4.4]

[1.3..1.3] [1.5..1.6] [2..2.1] [2.2..2.3] [2.9..3.4] [3.3..3.4] [4..4.2]

[1.9..2] [1.6..2.6] [2.1..3.3] [2.4..3.7] [3.9..4.2] [4.1..4.2] [4.1..4.3]

[1.8..2] [1.6..2.6] [1.9..3.2] [3..3.7] [3.4..4.1] [3.8..4.2] [3.9..4.3]

[1.4..1.4] [2..2.1] [1.6..2.3] [2.6..2.9] [2.3..3.7] [2.4..4] [4.1..4.2]

[1.3..1.4] [2..2.4] [2.3..2.5] [2.5..2.8] [3.1..3.7] [3.7..4.2] [4.1..4.2]

(b) BBB, Train (cv =0.6).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2.2 1.6 3 3.9 4 4.3

1.3 1.9 2.2 1.8 3.4 3.7 4.3

2.2 2.6 3.3 3.7 4.1 4.2 4.3

2.2 2.4 3.3 3.1 3.9 4.2 4.3

1.5 2.3 2.4 2.9 3.5 3.9 4.3

1.6 2.3 2.5 3 3.7 4 4.3

[1.3..1.3] [2.2..2.3] [1.5..2.6] [3..3.3] [3.8..4.1] [3.9..4.2] [4.2..4.4]

[1.3..1.3] [1.8..2] [2.1..2.4] [1.7..2.7] [3.3..3.5] [3.6..4] [4.2..4.4]

[2.1..2.4] [2.5..2.9] [3.2..3.5] [2.7..3.9] [4.1..4.2] [4.1..4.3] [4.3..4.4]

[2.1..2.3] [1.8..2.9] [2.9..3.4] [2.3..3.9] [3.7..4.2] [3.8..4.3] [4.3..4.4]

[1.5..1.7] [2.1..2.5] [1.7..2.5] [2.7..3] [3.4..4] [3.8..4.1] [4.2..4.4]

[1.5..1.6] [1.5..2.3] [2.4..2.7] [2.7..3.6] [3.6..3.9] [3.9..4.1] [4.2..4.4]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(c) V, Train (cv =0.6).

Shaped median downstream capacity [kBit/s]

Po
lic

y

Only network 1
 (constant)

Only network 2
(variable)

MPTCP

IANS
(Selective MPTCP)

IANS
(Optimist)

IANS
(Pessimist)

218 327 436 545 872 1090 2180

1.3 2.2 2.2 2.7 3.2 3.5 4.1

1.4 1.6 1.9 2.7 3.2 3.4 3.9

2.2 2.6 2.9 3.2 3.8 3.9 4.2

2.1 2.6 2.9 3.1 3.7 3.9 4.2

1.8 2.4 2.7 2.9 3.4 3.7 4

2.2 2.4 2.6 3.1 3.5 3.5 4.1

[1.3..1.3] [2.2..2.2] [2.1..2.3] [2.5..2.8] [3.1..3.3] [3.4..3.5] [4.1..4.3]

[1.4..1.4] [1.5..1.6] [1.8..1.9] [2.5..2.7] [3.1..3.2] [3.4..3.4] [3.9..4]

[2..2.2] [2.6..2.7] [2.8..3] [3.2..3.3] [3.8..3.8] [3.9..4] [4.2..4.3]

[1.9..2.2] [2.6..2.7] [2.8..3] [3.1..3.1] [3.6..3.8] [3.7..4] [4.2..4.3]

[1.7..1.9] [2.3..2.5] [2.7..2.7] [2.9..3] [3.4..3.5] [3.5..3.7] [3.9..4.1]

[2..2.2] [2.3..2.5] [2.6..2.7] [3..3.1] [3.5..3.6] [3.4..3.5] [4..4.1]

(d) RB, Ferry (cv =0.49).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2.1 2.2 2.5 4 3.9 4.3

1.4 1.4 1.8 2.6 3.3 3.5 4.1

1.8 2.7 3.3 3.6 4 4.2 4.2

1.8 2.6 3.2 3.5 3.8 4.2 4.1

1.4 2.5 2.8 3 3.7 3.9 4.2

1.5 2.5 2.8 3.3 3.8 3.8 4.3

[1.3..1.3] [1.9..2.1] [2..2.3] [1.6..2.6] [3.8..4] [3.7..4.2] [4.1..4.4]

[1.4..1.4] [1.4..1.5] [1.7..1.8] [2.4..2.6] [3.2..3.3] [3.4..3.6] [4..4.3]

[1.7..2.2] [2.6..2.8] [3.2..3.4] [3.5..3.7] [4..4.1] [4.1..4.2] [4.2..4.3]

[1.7..2.1] [2.4..2.6] [2.3..3.3] [3.1..3.6] [3.7..3.9] [3.9..4.2] [3.4..4.3]

[1.4..1.4] [2.4..2.5] [2.7..2.9] [2.1..3.2] [3.6..3.8] [3.5..4] [4.1..4.3]

[1.4..1.6] [2.3..2.5] [2.6..2.9] [2.8..3.4] [3.8..4.1] [3.7..4] [4.3..4.4]

(e) BBB, Ferry (cv =0.49).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2.2 1.6 3 4 4 4.3

1.4 1.6 1.8 2.6 3.4 3.6 4.2

2.3 2.9 3.4 3.7 4.1 4.2 4.3

2 2.9 3.4 3.7 4.1 4.2 4.3

1.5 2.5 2.7 3.3 3.9 3.9 4.2

1.8 1.7 3.1 3.5 4 4.1 4.2

[1.3..1.3] [2.1..2.3] [1.5..2.4] [3..3.3] [3.9..4.1] [3.9..4.2] [4.3..4.4]

[1.4..1.4] [1.6..1.6] [1.8..1.9] [2.5..3] [3.3..3.4] [3.5..3.6] [4.1..4.3]

[1.9..2.4] [2.9..2.9] [3.4..3.4] [3.6..3.9] [4.1..4.2] [4.1..4.3] [4.3..4.4]

[1.7..2.3] [1.9..2.9] [3.3..3.5] [3.5..3.8] [3.8..4.2] [4.1..4.3] [4.3..4.4]

[1.5..1.7] [2.2..2.5] [2.7..3] [3.3..3.4] [3.7..3.9] [3.7..4.2] [4.1..4.3]

[1.7..2.4] [1.7..2.5] [3..3.1] [3.5..3.6] [3.9..4] [4..4.1] [4.2..4.4]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(f) V, Ferry (cv =0.49).

Shaped median downstream capacity [kBit/s]

Po
lic

y

Only network 1
 (constant)

Only network 2
(variable)

MPTCP

IANS
(Selective MPTCP)

IANS
(Optimist)

IANS
(Pessimist)

218 327 436 545 872 1090 2180

1.3 2.2 2.2 2.6 3.2 3.5 4.1

1.4 1.8 2.1 2.2 2.9 3.1 3.8

2 2.6 2.8 3.1 3.7 3.9 4.2

2 2.5 2.9 3 3.6 4 4.2

1.9 2.4 2.5 2.7 3.3 3.6 3.9

2.1 2.4 2.5 3 3.4 3.5 4.1

[1.3..1.3] [2.2..2.2] [2.1..2.3] [2.4..2.8] [3.1..3.3] [3.4..3.5] [4.1..4.3]

[1.3..1.4] [1.7..2] [2..2.1] [2.1..2.3] [2.8..3] [3.1..3.5] [3.8..4]

[1.9..2] [2.6..2.6] [2.8..2.9] [3.1..3.1] [3.6..3.8] [3.8..4] [4.2..4.2]

[1.9..2.2] [2.4..2.6] [2.8..2.9] [2.9..3.1] [3.4..3.8] [3.5..4.1] [4.2..4.2]

[1.8..2.1] [2.2..2.5] [2.3..2.5] [2.6..2.8] [3.2..3.5] [3.5..3.8] [3.8..4.1]

[1.9..2.2] [2.3..2.5] [2.5..2.6] [2.9..3] [3.2..3.5] [2.5..3.5] [4..4.3]

(g) RB, Car (cv =0.45).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2 2 2.4 3.8 3.9 4.3

1.4 1.7 1.9 2.2 3 3.3 3.9

1.9 2.6 3 3.4 4 4.2 4.2

1.9 2.3 3 3.2 4 4 4.1

1.7 2.1 2.4 2.8 3.6 3.8 4

1.7 2.4 2.6 3 3.9 4 4.3

[1.3..1.3] [1.9..2] [1.4..2.3] [1.7..2.6] [3.7..3.9] [3.7..4.2] [4.1..4.4]

[1.3..1.4] [1.7..1.8] [1.9..2] [2.1..2.2] [2.9..3.1] [3.1..3.4] [3.7..4.1]

[1.8..2] [2.5..2.6] [2.9..3.1] [3.4..3.5] [3.8..4.1] [3.1..4.3] [4.1..4.3]

[1.8..2] [2.2..2.5] [2..3.1] [3..3.8] [3.7..4.1] [3.2..4.3] [3.4..4.3]

[1.6..1.7] [2.1..2.2] [1.5..2.6] [2.5..3] [3.5..3.7] [3.7..4] [3.9..4.1]

[1.6..1.8] [2.2..2.4] [1.6..2.6] [2.9..3.2] [3.5..3.9] [3.8..4.1] [3.8..4.4]

(h) BBB, Car (cv =0.45).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2.2 1.6 3 3.9 4 4.3

1.4 1.9 2.2 2.4 3.2 3.5 3.9

2.2 2.9 3.2 3.7 4.1 4.2 4.3

2.1 2.7 3.1 3.5 4 4.2 4.3

1.7 2.3 2.8 2.8 3.7 4 4.1

1.8 2.6 2.9 3.4 3.9 4 4.3

[1.3..1.3] [2.1..2.3] [1.5..2.6] [2.9..3.3] [3.9..4.1] [3.9..4.2] [4.3..4.4]

[1.4..1.4] [1.7..2.1] [2.1..2.2] [2.3..2.5] [3.1..3.4] [3.4..3.7] [3.9..4.1]

[1.4..2.2] [2.5..2.9] [3.1..3.5] [3.5..3.8] [4.1..4.2] [4..4.3] [4.3..4.4]

[1.9..2.2] [2.3..2.9] [3..3.2] [3.3..3.8] [3.7..4.2] [3.9..4.2] [4.3..4.4]

[1.7..2.1] [2.2..2.7] [2.6..3] [2.7..3.1] [3.5..3.9] [3.9..4] [4..4.2]

[1.7..2.2] [2.5..2.7] [2..3] [3.2..3.5] [3.9..4] [3.9..4.2] [4.2..4.4]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(i) V, Car (cv =0.45).

Shaped median downstream capacity [kBit/s]

Po
lic

y

Only network 1
 (constant)

Only network 2
(variable)

MPTCP

IANS
(Selective MPTCP)

IANS
(Optimist)

IANS
(Pessimist)

218 327 436 545 872 1090 2180

1.3 2.2 2.2 2.7 3.2 3.5 4.1

1.3 2.1 2.4 2.5 3.1 3.4 4.1

2.2 2.7 3 3.3 3.9 4.1 4.2

2.1 2.6 3 3.2 3.9 4 4.2

1.6 2.3 2.5 2.9 3.2 3.6 4.2

1.7 2.3 2.5 2.9 3.4 3.5 4.2

[1.3..1.3] [2.2..2.2] [2.1..2.3] [2.5..2.9] [3.1..3.3] [3.4..3.5] [4.1..4.3]

[1.3..1.3] [1.9..2.2] [2.2..2.4] [2.5..2.6] [3..3.2] [3.3..3.5] [4..4.3]

[2.2..2.3] [2.5..2.8] [3..3.3] [3.2..3.4] [3.7..3.9] [4..4.1] [4.2..4.2]

[2..2.2] [2.4..2.7] [3..3.3] [3..3.3] [2.6..4] [3.3..4.1] [4.2..4.3]

[1.6..1.7] [2.3..2.3] [2.5..2.6] [2.8..3] [3.1..3.5] [3.5..3.6] [4.1..4.3]

[1.7..1.8] [2.3..2.4] [2.4..2.6] [2.8..3] [3.2..3.5] [3.5..3.6] [4.1..4.3]

(j) RB, Bus (cv =0.34).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2 2.1 2.4 3.9 3.9 4.3

1.3 1.8 2.3 2.5 3.5 3.6 4.3

2.1 1.8 3.3 3.7 4.1 4.2 4.3

2 1.6 3.2 3.5 4 4.2 4.3

1.4 2.3 2.3 2.9 3.6 3.7 4.3

1.4 2.3 2.4 2.9 3.6 3.8 4.3

[1.3..1.3] [1.9..2.1] [1.4..2.3] [1.6..2.6] [3.8..4] [3.7..4.2] [4.1..4.4]

[1.3..1.3] [1.7..1.8] [2.2..2.4] [1.6..2.6] [2.4..3.6] [3.5..4] [4.2..4.3]

[2..2.2] [1.7..2.7] [2.3..3.4] [3.6..3.9] [4..4.2] [4..4.2] [4.2..4.3]

[2..2.1] [1.5..2.5] [2.1..3.4] [3.1..4] [3.8..4.1] [3.6..4.2] [4.2..4.3]

[1.4..1.4] [2.3..2.3] [1.6..2.5] [2.8..3] [3.3..4] [3.7..4.1] [4.2..4.4]

[1.4..1.4] [2.3..2.3] [1.6..2.5] [2.8..3.1] [3.5..4] [3.6..4.2] [3.9..4.3]

(k) BBB, Bus (cv =0.34).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2.2 1.6 3 4 4 4.3

1.3 1.9 2.6 2.9 3.7 3.9 4.3

2.4 3 3.4 3.9 4.2 4.3 4.3

2.2 2.8 3.4 3.5 3.9 4.3 4.3

1.7 2.5 2.2 3.1 3.9 4 4.3

1.7 1.5 2.9 3.2 3.9 4.1 4.3

[1.3..1.3] [2.1..2.3] [1.5..2.5] [3..3.3] [3.9..4.1] [4..4.2] [4.2..4.4]

[1.3..1.3] [1.8..2] [2.2..2.6] [1.8..3] [3.6..3.9] [3.7..4.2] [4.2..4.4]

[2.2..2.5] [2.9..3] [2.6..3.5] [3.8..4.1] [4.1..4.2] [4.2..4.3] [4.3..4.4]

[2.1..2.4] [2.7..3] [3.2..3.6] [2.4..4.1] [3.6..4.2] [3.6..4.3] [4.3..4.4]

[1.6..1.8] [1.5..2.6] [1.9..2.9] [3.1..3.3] [3.7..4.1] [3.9..4.1] [4.2..4.4]

[1.6..2] [1.5..2.6] [2.8..2.9] [3.1..3.4] [3.9..4.1] [3.9..4.2] [4.3..4.4]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(l) V, Bus (cv =0.34).

Shaped median downstream capacity [kBit/s]

Po
lic

y

Only network 1
 (constant)

Only network 2
(variable)

MPTCP

IANS
(Selective MPTCP)

IANS
(Optimist)

IANS
(Pessimist)

218 327 436 545 872 1090 2180

1.3 2.2 2.2 2.6 3.3 3.5 4.1

1.3 1.9 2 2.3 3.1 3.1 4

2.1 2.8 3 3.2 3.8 4 4.2

2 2.7 3 3.1 3.8 3.9 4.2

1.6 2.2 2.3 2.8 3.2 3.4 4

1.7 2.2 2.4 2.9 3.4 3.4 4.1

[1.3..1.3] [2.2..2.2] [2.1..2.3] [1.6..2.8] [3.2..3.3] [3.4..3.5] [4.1..4.3]

[1.3..1.3] [1.9..2] [1.9..2.1] [2.2..2.5] [2.9..3.1] [3.1..3.2] [4..4]

[1.9..2.2] [2.6..2.9] [2.9..3] [3.1..3.2] [3.6..3.9] [3.9..4.1] [4.2..4.2]

[1.8..2.1] [2.6..2.8] [2.9..3] [3.1..3.2] [3.7..3.9] [3.3..4] [4.2..4.3]

[1.5..1.7] [2.1..2.2] [2.2..2.4] [2.8..3] [3.2..3.2] [2.3..3.5] [4..4.1]

[1.7..1.8] [2.2..2.3] [2.3..2.5] [2.9..3] [3.2..3.4] [2.5..3.5] [4.1..4.3]

(m) RB, Tram (cv =0.3).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2.1 2.3 2.6 3.9 3.8 4.3

1.3 1.7 2 2.2 3.4 3.6 4.1

1.9 2.7 3.3 3.6 4 4.2 4.2

1.9 2.5 3.1 3.5 3.9 4.1 4.1

1.3 2.2 2.4 1.9 3.6 3.7 4.2

1.3 2.3 2.2 2.9 3.6 3.8 4.2

[1.3..1.3] [1.9..2.1] [2.1..2.3] [1.6..2.7] [3.7..4] [3.7..4.2] [4.1..4.4]

[1.3..1.3] [1.7..1.8] [1.8..2] [2.1..2.4] [3.3..3.6] [3.5..3.7] [4..4.2]

[1.8..2] [2.6..2.7] [2.3..3.4] [3.5..3.7] [4..4.1] [4..4.2] [4.1..4.3]

[1.8..1.9] [2.5..2.6] [2.3..3.3] [2.1..3.6] [3.7..4] [3.8..4.2] [3.7..4.3]

[1.3..1.4] [2.2..2.3] [2.3..2.5] [1.9..2.8] [3.4..3.8] [3.6..4] [4..4.2]

[1.3..1.3] [2.2..2.3] [1.6..2.5] [1.9..3.1] [3.3..4] [3.7..4.1] [4..4.3]

(n) BBB, Tram (cv =0.3).
Shaped median downstream capacity [kBit/s]

218 327 436 545 872 1090 2180

1.3 2.2 1.6 3.1 3.9 4 4.3

1.3 2 2.2 2.6 3.5 3.8 4.2

2.3 3 3.4 3.8 4.1 4.2 4.3

2.2 2.9 3.2 3.5 4.1 4.2 4.3

1.5 2.4 2.7 3.1 3.7 4 4.3

1.6 1.5 3 3.1 3.9 4 4.3

[1.3..1.3] [2.2..2.3] [1.5..2.4] [3..3.3] [3.8..4.1] [3.9..4.2] [4.2..4.4]

[1.3..1.3] [2..2] [2.2..2.3] [2.5..2.9] [3.4..3.6] [3.7..4] [4.1..4.3]

[2.2..2.5] [2.9..3] [2.5..3.5] [3.7..4] [4.1..4.2] [4.1..4.4] [4.3..4.3]

[2.1..2.3] [2.7..2.9] [2.9..3.3] [3.3..3.9] [3.9..4.2] [3.8..4.3] [4.3..4.4]

[1.4..1.6] [1.5..2.6] [2.7..2.9] [2.9..3.1] [3.5..4] [3.8..4.2] [4.2..4.4]

[1.5..1.8] [1.4..2.5] [2.8..3] [3.1..3.3] [3.9..4.2] [4..4.2] [4.2..4.4]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(o) V, Tram (cv =0.3).

Figure 8.14: Median MOS with confidence intervals for variable capacity scenarios
other than Capacity Decrease

109

Chapter 8 Impact of Informed Access Network Selection on Application Performance

Concurrent TCP sessions

P
o

lic
y

Only network 1
 (constant)

Only network 2
(variable)

MPTCP

IANS
(Selective MPTCP)

IANS
(Optimist)

IANS
(Pessimist)

1 2 3 4 8

4.1 4.1 4.1 4.1 4.1

4.2 3.4 2.7 1.8 2.2

4.3 4.2 4.2 4.2 4.2

4.2 4.2 4.2 4.2 4.1

4.2 3.9 3.3 4.1 4.2

4.2 4 4.1 4.2 4.2

[4.1..4.2] [4.1..4.2] [4..4.2] [4.1..4.2] [4..4.2]

[4.2..4.4] [3..3.9] [2.1..2.9] [1.6..2.3] [2..2.3]

[4.2..4.5] [4.2..4.3] [4.1..4.3] [4.1..4.2] [4.1..4.2]

[4.2..4.4] [4.2..4.4] [4.1..4.3] [4.1..4.2] [4.1..4.2]

[4.2..4.3] [3.7..4] [2.6..4.1] [4.1..4.2] [4.1..4.3]

[4.2..4.3] [4..4.1] [4.1..4.2] [4.1..4.2] [4.1..4.2]

(a) RB, Latency = 10 ms.
Concurrent TCP sessions

1 2 3 4 8

4.2 4.2 4.2 4.2 4.3

4.3 3.9 2.8 1.7 2

4.3 4.3 4.3 4.3 4.3

4.3 4.2 4.3 4.3 4.3

4.3 3.8 3.5 4.3 4.3

4.3 3.8 4.2 4.3 4.3

[4.2..4.3] [3.2..4.3] [3.2..4.3] [4.2..4.2] [3.2..4.3]

[4.1..4.3] [3.3..4] [2.2..3.4] [1.6..2] [1.7..2.2]

[4.3..4.5] [4.3..4.4] [4.1..4.3] [4.2..4.3] [4..4.3]

[4.3..4.4] [3.9..4.3] [4..4.3] [4.2..4.3] [4.2..4.3]

[4..4.3] [3.6..3.9] [2.8..4.2] [4.1..4.3] [4.1..4.3]

[4.2..4.3] [3.8..4.3] [3.8..4.3] [4.1..4.3] [4..4.3]

(b) BBB, Latency = 10 ms.
Concurrent TCP sessions

1 2 3 4 8

4.3 4.3 4.3 4.3 4.3

4.3 3.8 2.6 1.7 2.2

4.3 4.3 4.3 4.3 4.3

4.3 4.3 4.3 4.3 4.3

4.3 4.2 3.4 4.3 4.3

4.3 4.3 4.3 4.3 4.3

[4.2..4.4] [4.2..4.4] [4.3..4.4] [4.2..4.4] [4.2..4.4]

[4.3..4.4] [3.5..4.2] [2.1..3.3] [1.5..2.8] [2.1..2.5]

[4.3..4.4] [4.3..4.4] [4.3..4.4] [4.2..4.4] [4.3..4.4]

[4.3..4.4] [4.3..4.4] [4.3..4.4] [4.2..4.4] [4.3..4.4]

[4.3..4.4] [3.9..4.3] [2.9..4.3] [4.2..4.4] [4.3..4.4]

[4.3..4.4] [4.1..4.4] [4.2..4.4] [4.2..4.4] [4.2..4.4]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(c) V, Latency = 10 ms.

Concurrent TCP sessions

Po
lic

y

Only network 1
 (constant)

Only network 2
(variable)

MPTCP

IANS
(Selective MPTCP)

IANS
(Optimist)

IANS
(Pessimist)

1 2 3 4 8

4.1 4.1 4.1 4.1 4.1

4.2 3.3 2 1.5 1.6

4.2 4.2 4.2 4.1 4.1

4.2 4.2 4.1 4.1 4.1

4.2 3.7 3.9 4.1 4.1

4.1 4 4 3.9 4.1

[4..4.2] [4..4.2] [4..4.2] [4..4.2] [3.9..4.2]

[4.1..4.3] [2.5..3.7] [1.7..2.5] [1.4..1.7] [1.5..1.9]

[4.2..4.3] [4.2..4.3] [4.1..4.2] [4.1..4.2] [4..4.1]

[4.2..4.4] [4.1..4.3] [4..4.2] [4..4.2] [4..4.2]

[4.1..4.2] [3.5..3.8] [2.7..4.1] [4.1..4.2] [4..4.2]

[4.1..4.2] [3.8..4] [3.7..4.1] [3.5..4.2] [4..4.2]

(d) RB, Latency = 100 ms.
Concurrent TCP sessions

1 2 3 4 8

4.2 4.2 4.2 4.2 4.2

4.2 3.6 2.2 1.6 1.5

4.3 4.3 4.2 4.3 4.2

4.3 4.3 4.2 4.2 4.2

4.2 4.1 3.3 4.2 4.2

4.2 4.1 4.1 4.1 4

[4.1..4.2] [4.1..4.2] [3.9..4.2] [4.1..4.2] [4.1..4.2]

[3.9..4.3] [2.9..4] [1.9..3.3] [1.4..1.9] [1.5..1.8]

[4.2..4.4] [4.2..4.4] [4.1..4.3] [4.1..4.3] [4..4.3]

[4.2..4.4] [4.2..4.4] [3.8..4.3] [3.9..4.2] [4.1..4.2]

[4.2..4.3] [3.4..4.2] [2.7..4.2] [4.1..4.2] [4.2..4.2]

[4..4.3] [3.4..4.2] [3.7..4.2] [3.7..4.2] [3.8..4.2]

(e) BBB, Latency = 100 ms.
Concurrent TCP sessions

1 2 3 4 8

4.3 4.3 4.3 4.3 4.3

4.3 3.7 2.8 1.5 1.6

4.3 4.3 4.3 4.3 4.3

4.3 4.3 4.3 4.3 4.3

4.3 4 3.1 4.3 4.3

4.3 4.3 4.2 4.3 4.3

[4.2..4.4] [4.2..4.4] [4.2..4.4] [4.2..4.4] [4.2..4.4]

[4.3..4.4] [3.3..4.2] [2.3..3.4] [1.5..2] [1.5..1.8]

[4.3..4.4] [4.3..4.4] [4.3..4.3] [4.2..4.4] [4.2..4.4]

[4.3..4.4] [4.1..4.4] [4.2..4.4] [4.2..4.3] [4.2..4.4]

[4.3..4.4] [3.9..4.2] [2.3..3.7] [4.2..4.4] [4.2..4.4]

[4.3..4.4] [4.1..4.4] [4..4.3] [4.1..4.3] [3.9..4.4]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(f) V, Latency = 100 ms.

Figure 8.15: Median MOS with confidence intervals for scenarios with variable TCP
cross-traffic.

Summary of systematic study: Our most important findings are:

1. IANS improves QoE in cases with low available downstream capacity by avoid-
ing stalling and enabling to load higher video representations. In such scenarios,
the Pessimist Policy often improves QoE compared to using only a single net-
work and outperforms the Optimist Policy in most cases.

2. While MPTCP improves QoE in most variable capacity scenarios, it hurts per-
formance for the Capacity Decrease scenario.

3. In such a scenario, the Selective MPTCP Policy improves QoE by avoid-
ing using the low downstream capacity network. This shows the potential of
using IANS to selectively enable MPTCP only for cases in which it benefits
performance.

Going forward, IANS should combine the Pessimist Policy with the Selective
MPTCP Policy by allowing it to enable MPTCP.

8.7.3 Cross-Traffic Scenarios

After varying the shaped downstream capacity on network 2, we now focus on scenar-
ios in which we keep the shaped downstream capacity constant, but introduce variable

110

8.7 IANS Benefits For Video Streaming

TCP cross-traffic, recall Table 8.1. Here, network 1 provides a constant downstream
capacity of 2 Mbit/s without any cross-traffic, while downstream capacity on net-
work 2 is constant at 5 Mbit/s with cross-traffic on the bottleneck link. We vary the
latency on both networks and show results for scenarios with short latencies (10 ms)
and with long latencies (100 ms).

Figure 8.15 shows a heatmap of the QoE for different cross-traffic scenarios and ABRs
for all video workloads. For the RB video, Figure 8.15a shows the results for scenarios
with short latencies and Figure 8.15d for the scenarios with long latencies. Within
each subplot, we show scenarios with 1, 2, 3, 4, and 8 concurrent TCP sessions, i.e.,
harpoon sessions loading files of varying sizes. For these scenarios, each heatmap entry
shows the achieved median MOS with confidence intervals for a specific scenario and
access network selection policy. The color scheme is the same as in Section 8.7.2.

Here, IANS yields a high MOS even with concurrent cross-traffic of up to 8 TCP
sessions, while the cross-traffic decreases the MOS for network 2. This confirms
that IANS can detect the decreased downstream capacity due to cross-traffic and,
therefore, uses network 1 or MPTCP. For some cases, the Optimist Policy sees
slightly decreased performance, as attempts to use network 2 occasionally. Results
for BBB are similar, see Figure 8.15b and Figure 8.15e. However, for BBB, we
see an interaction between the shaped downstream capacity on network 1 and the
BOLA_BASIC ABR. Here, BOLA_BASIC continuously switches representations,
which leads to a decreased MOS on network 1 for some cases. Results for V are
similar to BBB and RB, see Figure 8.15c and 8.15f.

Summary for cross-traffic scenarios: For cases with high current cross-traffic on
a network, IANS avoids using this network, thus, it avoids MOS degradations.

111

9
Conclusion

In this thesis, we study access network selection informed by application needs and
network performance characteristics to improve application performance. In this
chapter, we summarize our findings, discuss lessons learned, and outline future work.

9.1 Summary

Performance bottlenecks leading to adverse network conditions, such as long latency
or low downstream capacity, may degrade application performance and lead to an
unsatisfactory Quality of Experience (QoE). Due to such performance bottlenecks, a
single access network may not be able to satisfy application needs. However, end-user
devices often have a choice between multiple access networks. We argue that using
these networks efficiently can help overcome some of the performance bottlenecks,
and, thus, improve application performance. Therefore, we introduce Informed Ac-
cess Network Selection (IANS) to select the most suitable access network(s) based
on application needs and network performance characteristics. Then, we show how
IANS can improve the performance of Web browsing and HTTP Adaptive Streaming
(HAS).

First, we investigate how to accurately assess application performance for Web brows-
ing. We find several Web performance pitfalls, e.g., regarding initial redirects for load
times and data sources for resource sizes, and derive guidelines regarding Web per-
formance measurement.

To achieve IANS, we enable applications to express what to optimize for when se-
lecting an access network. To this end, we design Socket Intents as hints about what
an application knows, expects, or wants to achieve. In contrast to Quality of Service
(QoS) requirements, Socket Intents are considered in a best-effort manner and help
to use the available resources in the most efficient way. Given that the actually avail-
able information may depend on the application and its context, we specify different
Intents: For example, applications can set the Traffic Category to indicate what
network performance characteristics to optimize for, e.g., to optimize small transfers
for short latency and large transfers for high downstream capacity. Alternatively,
applications can provide more detailed properties such as the Size to be Received
for a transfer, so IANS can decide what network performance characteristics to opti-
mize for. To match application needs to the most suitable access networks, we collect

113

Chapter 9 Conclusion

estimates of the current network performance characteristics, such as latency and
downstream capacity, based on existing traffic.

Combining both Socket Intents and network performance characteristics, we design
IANS policies to improve the performance of Web browsing and HAS. For Web brows-
ing, we define the Threshold Policy, which distributes Web resource loads based
on the Size to be Received as well as current latency and available downstream
capacity estimates. For HAS, we define three different IANS policies: The Opti-
mist Policy, the Pessimist Policy, and the Selective MPTCP Policy. While
the Optimist Policy and the Pessimist Policy select the most suitable access
network according to downstream capacity estimates on different time scales, the
Selective MPTCP Policy enables Multipath TCP (MPTCP) only for transfers
with the Traffic Category set to Bulk, i.e., the application wants to optimize
for high downstream capacity, as MPTCP adds overhead for other transfers while
it risks not providing any benefit. Furthermore, MPTCP is only used if sufficient
downstream capacity is available, i.e., if MPTCP is unlikely to suffer from extensive
head-of-line blocking, to prevent performance degradations.

We implement IANS within the Socket Intents prototype. For application needs,
we design enhanced networking Application Programming Interfaces (APIs) through
which an application can specify its Socket Intents. To determine network perfor-
mance characteristics, we collect and aggregate estimates within the prototype. We
enable the following applications to benefit from IANS: For Web browsing, we write
a Web proxy setting the Size to be Received for each transfer, so we can load each
resource over the most suitable access network selected by IANS. For HAS, we mod-
ify a video player to set the Bitrate Received of the representation for the next
segment and the Duration of the current buffer level, so IANS can choose a network
with short predicted load time while preventing stalls due to an empty buffer.

To evaluate the benefits of IANS for Web browsing and HAS, we use both a controlled
testbed and servers “in the wild”. For Web browsing, we find that IANS yields shorter
load times than a single network or MPTCP in particular for scenarios with asym-
metric network performance characteristics, in which one access network provides
short latency but low downstream capacity and the other network provides high ca-
pacity but long latency. In such cases, IANS even outperforms MPTCP because
MPTCP can experience performance problems caused by self-induced congestion on
the low downstream capacity network. Using Web servers “in the wild”, we con-
firm that IANS shows the same speedups as in our testbed, as it does not require
server-sided support. In contrast, MPTCP is not able to provide the same benefits
an in the testbed because MPTCP deployment is still limited. For HAS, we find that
IANS improves QoE for scenarios with low downstream capacities. Here, IANS helps
overcome limitations of MPTCP by enabling MPTCP only if sufficient downstream
capacity is available.

114

9.2 Discussion and Lessons Learned

9.2 Discussion and Lessons Learned

Application Knowledge Benefits Access Network Selection. From our evalu-
ation, we learn that IANS improves application performance, particularly in scenarios
with low downstream capacities or under asymmetric network conditions. In such sce-
narios, IANS provides a major advantage compared to application-agnostic MPTCP,
e.g., by reducing relevant Web performance metrics such as Above-The-Fold time
(ATF) by between 500 and 1000 ms in the median. Moreover, IANS can comple-
ment MPTCP because it works on a different granularity, i.e., it distributes transfers
instead of subflows of a single transfer.

Web Browsing: Providing Application Knowledge is Challenging. For Web
browsing, our application specifies the Size to be Received prior to loading each
resource. We find that having such knowledge available is challenging. In practice,
this information could be included in the metadata, e.g., in the Web page that ref-
erences the resource. For dynamic resources, the Size to be Received could be
injected into the page by the Web server dynamically, however, this increases server
load. For our evaluation, to make the Size to be Received available for unmodified
Web pages, we use a two-step download. While this introduces a performance over-
head, it does not require modifying the Web page. Here, there is a tradeoff between
the extent of the modifications to an application and the achievable performance op-
timization for the Size to be Received. Other Socket Intents may be more readily
available, for example, the Size to be Sent for uploaded files.

What Socket Intents to Set: Traffic Properties or Network Performance
Characteristics. We specify Socket Intents to either set properties of its transfers,
such as the Size to be Received, or to set what network performance characteristics
to optimize for, e.g., for short latency or high downstream capacity. While predict-
ing the properties of future transfers may be challenging, e.g., due to dynamically
generated resources with changing sizes, such properties may provide useful hints to
IANS policies, as they enable calculations such as load time predictions. In contrast,
setting what network performance characteristics to optimize for may be easier for
some applications, but it embeds assumptions in the application code. This may
be a problem in case an application is not updated when an assumption no longer
holds. However, we note that some applications already embed such assumptions in
the implementation, e.g., by always preferring WiFi under the assumption that it
provides better performance than cellular. Finally, setting an Intent of course only
makes sense if there are IANS policies available that can make good decisions based
on it.

Implementation Experience When Integrating Socket Intents Into Appli-
cations. When implementing support for the Socket Intents APIs into applications,
we find that while this is feasible with limited effort for some applications, it is more
challenging for others. Relevant applications often implement their own connection
abstraction on top of the Socket API. Therefore, instead of, e.g., simply replacing
existing Socket API calls with the calls of our enhanced Socket API, we have to in-
tegrate our API calls into the existing connection abstraction. For instance, when

115

Chapter 9 Conclusion

modifying the video player presented in Section 7.4.2, we have to provide the socket
returned by the Socketconnect API to a data structure within the application. While
integrating our synchronous Socketconnect API into the video player is feasible be-
cause the player uses threads, it is not feasible to integrate this API into applications
using asynchronous networking via callbacks. To support such applications, future
work should add a callback-based API. Alternatively, it may be beneficial to im-
plement Socket Intents support into a general purpose HyperText Transfer Protocol
(HTTP) library that can be used by multiple applications that use such a library,
e.g., mobile apps. However, highly complex applications such as Web browsers are
often monolithic and use their own internal HTTP library, so we would have to mod-
ify each browser individually. While it would be feasible to implement Socket Intents
into a browser, we opt for a Web proxy for this thesis for multiple reasons. First,
using a Web proxy allows us to support multiple different browsers. Second, browser
release cycles are short, so any third party modifications may quickly become out of
date and, therefore, unrepresentative of the Web performance experienced by actual
users. However, if support for an enhanced networking API were included in the main
branch of the browser and, thus, included in new releases, the best option would be
to implement Socket Intents directly in the browser.

API Design: Limitations of Sockets. When designing APIs for applications to
express Socket Intents for their connections or transfers, we use sockets as an abstrac-
tion. We find that this works well, e.g., when IANS policies distribute HTTP/1.1
transfers across Transmission Control Protocol (TCP) connections on different access
networks. However, one drawback of using sockets is that the application has to man-
age additional information for each socket, e.g., a Transport Layer Security (TLS)
context. For more recent versions of HTTP, such as HTTP/2 and HTTP/3, which
uses Quick UDP Internet Connection (QUIC), IANS can still distribute transfers,
e.g., as new streams on a single TCP or QUIC connection on each access network.
However, it is infeasible to use sockets as an abstraction for streams, as streams
are usually implemented on top of sockets. Therefore, an enhanced networking API
has to present a different abstraction to applications to support HTTP/2 or QUIC.
The TAPS API [56], provides such an abstraction, i.e., a generic connection over
which an application can send and receive messages. Underneath, this connection
may correspond to a TCP connection encrypted by TLS, but also to one or multiple
QUIC streams onto which messages can be distributed. This not only relieves the
application of a major share of the burden to manage connections but also enables
per-transfer IANS for HTTP/2 and QUIC.

9.3 Future Work

Changing Bottlenecks: Shift Focus to Path Selection. Access network perfor-
mance is continuously improving, e.g., with the evolution of uplinks and of 4G cellular
networks and with the upcoming deployment of 5G. Communication systems using
these technologies may provide short latencies and high downstream capacities in the

116

9.3 Future Work

access network. Therefore, performance bottlenecks may shift from the access net-
work to the backbone, as observed by Baranasuriya et al. [5]. Even if bottlenecks are
no longer in the access networks, still, IANS can select between different paths with
different network performance characteristics to the same destination. Over these
different paths, different remote hosts may serve the same content, e.g., two different
Content Delivery Network (CDN) replica. In such cases, there is additional poten-
tial for optimization using IANS. However, shifting our focus from access network
selection to path selection makes it more difficult to use performance measurements
obtained for one path to estimate the performance for a different path over the same
access network. We conclude that future work should differentiate network perfor-
mance characteristics not by the access network, but by, e.g., the remote host or
subnet. Once collected, such estimates should be made available in a unified way,
such that multiple different path selection technologies, e.g., a TAPS implementation
or a connection manager, can benefit from this information.

Advanced Access Network Selection Policies. To select an access network or
path for a new application or transfer, performance estimates may not be available or
they may be outdated. Therefore, to use the access network or path with the shortest
latency, IANS should open multiple concurrent connections over the available access
networks or paths. Then, it should use the connection that connects first, similar to
the “Happy Eyeballs”-inspired approach taken by NEAT [55] and TAPS [82]. More
generally, an IANS policy could explicitly build an adaptive control loop by learning
about the actual performance experienced by transfers, e.g., load times. Based on
this feedback, the IANS policy could adapt and optimize its decisions.

Exploring Access Network Selection for More Applications. In addition to
Web browsing and HAS, more applications may benefit from IANS. For example, fu-
ture work should consider other HTTP-based applications than Web browsing, which
have diverse requirements: An audio streaming application may interactively stream
content and prefetch other content at the same time. In parallel, other applications
may, e.g., synchronize files from a mobile end-user device to a server, perform updates,
or issue interactive queries for the user to look up specific information. These trans-
fers may have different Timeliness requirements [83] and the Size to be Received
may be more readily available for such applications than for Web browsing.

Access Network Selection in the Real World. To satisfy the needs of actual
users, access network selection needs to take other objectives than performance into
account. For example, using a cellular interface may be limited by a data plan and the
readiness to use multiple access networks may be influenced by the current battery
status. Here, future work should include the Cost Preference or Energy Effi-
ciency Socket Intents. To match these Socket Intents to networks, end-user devices
should gather information on the current battery status or data plan information.
Furthermore, different entities may be interested in defining access network selec-
tion policies, e.g., the user, operating system, network provider, or service provider.
These different entities may prioritize different objectives. For example, while a user
may prioritize application performance, a network provider may prioritize distribut-
ing network load. Therefore, there should be a framework to express and reconcile

117

Chapter 9 Conclusion

different access network selection policies and objectives. Designing such a framework
is not trivial, e.g., as it may have to make complex decisions transparent to the user
or to other entities.

9.4 Outlook: Better APIs for a Better Internet

Providing an enhanced networking API such as the TAPS API [56] has benefits in
addition to IANS. Such an API can simplify applications by relieving them of the
burden of advanced connection management. Furthermore, if protocol details are
handled within the connection abstraction underneath the API, it becomes easier to
deploy new protocols. For example, in addition to automatically preferring IPv6 over
IPv4, applications may be able to use new transport protocols such as QUIC without
being modified. Therefore, enhanced networking APIs have the potential to improve
the state of the art of the Internet.

118

Glossary

ABR Adaptive Bit-Rate algorithm: Algorithm used by a HAS player to adapt the
loaded media representation to the conditions of the network and the player.
26, 42–44, 70, 71, 84, 91–93, 106–109, 112

AP Access Point. 7, 8, 11, 15, 20–22, 56, 85, 94

API Application Programming Interface. v, 4, 7, 28–32, 34, 35, 44, 47, 77–84, 91,
114–116, 118

ATF Above-The-Fold time: The time taken to load all user-visible content of a Web
page. 5, 34, 91, 96–98, 100–102, 104, 115, 131

BSS Besic Service Set: Connectivity provided by a single WiFi Access Point. 11

cv coefficient of variation. 87, 88, 105–108, 110, 131

CDN Content Delivery Network. 27, 42, 60, 87, 117

CPE Customer Premises Equipment. 12

CQM A model that predicts QoE over time during video playout [81].. 91–93

DASH Dynamic Adaptive Streaming over HTTP. 42, 83

DNS Domain Name System. 36, 37, 40, 60, 61, 79, 81, 82, 87

DOM Document Object Model. 34, 35

DSCP Differentiated Services Code Point. 46

DSL Digital Subscriber Line. 12–14

EBSS Extended Basic Service Set: Connectivity provided by a WiFi network in-
cluding all its Access Points. 8, 11

ECDF Empirical Cumulative Distribution Function. 96–98, 104, 131

HAR HTTP Archive: Format to store HTTP requests and responses. 34–41, 91, 104

HAS HTTP Adaptive Streaming. v, 3–5, 33, 41–44, 47, 59, 61, 70, 71, 74, 77, 82,
83, 85–89, 91–93, 113, 114, 117

HTTP HyperText Transfer Protocol. 17, 26–28, 31, 35, 37–42, 69, 80, 83, 104, 116,
117

HTTPS HTTP secured by TLS. 37, 83

119

Glossary

IANS Informed Access Network Selection. v, xvi, 3–5, 22, 27, 33, 41, 43–47, 49, 59,
61–63, 69–71, 74, 77–79, 82–89, 91–93, 96–109, 111–118

IETF Internet Engineering Task Force. 20, 32, 45

IFOM IP flow mobility for Proxy Mobile IPv6. 20–22

ISP Internet Service Provider. 8, 12–15, 19

LAN Local Area Network. 7, 8, 11–14, 20

MAM Multi Access Manager: Component of the Socket Intents prototype that hosts
the policies and gathers network characteristics. 77, 78, 80–82, 94, 95

mHTTP Multi-Source Multipath HTTP. 27

MOS Mean Opinion Score: User satisfaction on a scale from 1 to 5. v, 91–93, 96, 99,
100, 102, 104, 105, 107–112, 131, 132

MPD Media Presentation Description. 42

MP-H2 Multipath HTTP/2. 27

MPQUIC Multipath QUIC. 27

MPTCP Multipath TCP. v, 2, 4, 5, 7, 23–27, 30, 31, 52, 59, 60, 74, 75, 86, 92,
96–104, 106–109, 111, 112, 114, 115, 131

NAT Network Address Translation. 17, 24, 25, 51

OS Operating System. 7, 24, 25, 27–32, 78, 80

OTT Over-The-Top: Solution without network integration. 21, 22

PLT Page Load Time. 34, 37, 91, 92, 96, 99, 101–104, 131, 133

QoE Quality of Experience. v, 1, 5, 20–22, 41, 44, 70, 90, 91, 105–109, 111, 113, 114

QoS Quality of Service. 32, 46, 113

QUIC Quick UDP Internet Connection: A UDP-Based multiplexed and secure trans-
port protocol [37, 38]. 26–29, 40, 53, 55, 56, 80, 116, 118

RSS Received Signal Strength. 10, 21, 22, 50, 56, 71, 87

RTP Real-Time Transport Protocol. 27, 41

RTT Round Trip Time. 17, 22, 26, 27, 53, 54, 56, 94, 95

SCTP Stream Control Transmission Protocol. 26, 55

120

Glossary

SNR Signal-to-Noise-Ratio. 10, 12

SRTT Smoothed Round Trip Time. 4, 53, 54, 68, 81, 94, 95, 131

TAPS Transport Services: Working Group in the IETF that develops a common
abstraction on top of different transport protocols [56]. 32, 116–118

TCP Transmission Control Protocol. 2, 17, 23–31, 37, 38, 40, 47, 52–56, 61, 65, 67,
68, 80, 81, 83, 86–88, 94, 95, 101, 103, 111, 112, 116, 131, 132

TCP/IP Protocol stack based on TCP and IP. 29

TLS Transport Layer Security. 28, 31, 35, 37, 38, 65, 67, 80, 83, 92, 116

TTFP Time To First Paint: The time until the first content of a Web page is rendered.
34, 36, 37

UDP User Datagram Protocol. 28, 29, 55, 86, 87, 94, 95

URL Uniform Resource Locator. 34, 37, 40, 42, 89

VoIP Voice over IP. 20–22

121

Bibliography

[1] Joel Sommers and Paul Barford. “Cell vs. WiFi: on the performance of metro
area mobile connections”. In: Proceedings of the 2012 Internet Measurement
Conference. ACM. 2012, pp. 301–314 (cit. on pp. 1, 17, 94).

[2] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari Balakrishnan. “Wifi,
lte, or both?: Measuring multi-homed wireless internet performance”. In: Pro-
ceedings of the 2014 Conference on Internet Measurement Conference. ACM.
2014, pp. 181–194 (cit. on pp. 1, 2, 17, 26).

[3] Srikanth Sundaresan, Nick Feamster, and Renata Teixeira. “Home network or
access link? locating last-mile downstream throughput bottlenecks”. In: Inter-
national Conference on Passive and Active Network Measurement. Springer.
2016, pp. 111–123 (cit. on pp. 1, 11, 14, 67).

[4] Changhua Pei, Youjian Zhao, Guo Chen, Ruming Tang, Yuan Meng, Minghua
Ma, Ken Ling, and Dan Pei. “WiFi can be the weakest link of round trip
network latency in the wild”. In: IEEE INFOCOM 2016-The 35th Annual IEEE
International Conference on Computer Communications. IEEE. 2016, pp. 1–9
(cit. on p. 1).

[5] Nimantha Baranasuriya, Vishnu Navda, Venkata N Padmanabhan, and Seth
Gilbert. “QProbe: locating the bottleneck in cellular communication”. In: Pro-
ceedings of the 11th ACM Conference on Emerging Networking Experiments
and Technologies. ACM. 2015, p. 33 (cit. on pp. 1, 15, 117).

[6] Sebastian Egger, Tobias Hossfeld, Raimund Schatz, and Markus Fiedler. “Wait-
ing times in quality of experience for web based services”. In: 2012 Fourth Inter-
national Workshop on Quality of Multimedia Experience. IEEE. 2012, pp. 86–96
(cit. on p. 1).

[7] Sandvine. The Mobile Internet Phenomena Report. https://www.sandvine.com/
hubfs/downloads/phenomena/2019-mobile-phenomena-report.pdf. 2019 (cit. on
p. 1).

[8] Sunghwan Ihm and Vivek S Pai. “Towards understanding modern web traffic”.
In: Proceedings of the 2011 ACM SIGCOMM conference on Internet measure-
ment conference. ACM. 2011, pp. 295–312 (cit. on p. 1).

[9] Feng Qian, Subhabrata Sen, and Oliver Spatscheck. “Characterizing resource
usage for mobile web browsing”. In: Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM. 2014, pp. 218–
231 (cit. on p. 1).

[10] Edward J Oughton and Zoraida Frias. Exploring the Cost, Coverage and Rollout
Implications of 5G in Britain. https://assets.publishing.service.gov.uk/

government/uploads/system/uploads/attachment_data/file/577965/Exploring_

the_Cost_Coverage_and_Rollout_Implications_of_5G_in_Britain_-_Oughton_

and_Frias_report_for_the_NIC.pdf. 2016 (cit. on p. 1).

123

https://www.sandvine.com/hubfs/downloads/phenomena/2019-mobile-phenomena-report.pdf
https://www.sandvine.com/hubfs/downloads/phenomena/2019-mobile-phenomena-report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/577965/Exploring_the_Cost_Coverage_and_Rollout_Implications_of_5G_in_Britain_-_Oughton_and_Frias_report_for_the_NIC.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/577965/Exploring_the_Cost_Coverage_and_Rollout_Implications_of_5G_in_Britain_-_Oughton_and_Frias_report_for_the_NIC.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/577965/Exploring_the_Cost_Coverage_and_Rollout_Implications_of_5G_in_Britain_-_Oughton_and_Frias_report_for_the_NIC.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/577965/Exploring_the_Cost_Coverage_and_Rollout_Implications_of_5G_in_Britain_-_Oughton_and_Frias_report_for_the_NIC.pdf

Bibliography

[11] OECD. Communications Outlook. http : / / www . oecd . org / sti / broadband /

communications-outlook.htm. 2013 (cit. on pp. 2, 14).
[12] OECD. Digital Economy Outlook. https://www.oecd.org/sti/oecd-digital-

economy-outlook-2017-9789264276284-en.htm. 2017 (cit. on pp. 2, 14).
[13] European Commission. Study on Broadband Coverage in Europe. https://ec.

europa.eu/digital-single-market/en/news/study-broadband-coverage-europe-

2017. 2017 (cit. on pp. 2, 14).
[14] Akamai. State of the Internet / Connectivity Report. https://www.akamai.com/

us/en/resources/our-thinking/state-of-the-internet-report/global-state-

of-the-internet-connectivity-reports.jsp. 2017 (cit. on p. 2).
[15] M. Wasserman and P. Seite. Current Practices for Multiple-Interface Hosts.

RFC 6419 (Informational). RFC. Fremont, CA, USA: RFC Editor, Nov. 2011.
doi: 10.17487/RFC6419. url: https://www.rfc-editor.org/rfc/rfc6419.txt

(cit. on pp. 2, 31).
[16] A. Ford et al. TCP Extensions for Multipath Operation with Multiple Addresses.

RFC 6824 (Experimental). RFC. Fremont, CA, USA: RFC Editor, Jan. 2013.
doi: 10.17487/RFC6824. url: https://www.rfc-editor.org/rfc/rfc6824.txt

(cit. on pp. 2, 23).
[17] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,

Fabien Duchene, Olivier Bonaventure, and Mark Handley. “How Hard Can
It Be? Designing and Implementing a Deployable Multipath TCP”. In: 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
12). 2012, pp. 399–412 (cit. on pp. 2, 24, 25).

[18] Yung-Chih Chen, Yeon-sup Lim, Richard J Gibbens, Erich M Nahum, Ramin
Khalili, and Don Towsley. “A measurement-based study of multipath tcp per-
formance over wireless networks”. In: Proceedings of the 2013 conference on
Internet measurement conference. ACM. 2013, pp. 455–468 (cit. on pp. 2, 25).

[19] Bo Han, Feng Qian, Shuai Hao, and Lusheng Ji. “An anatomy of mobile web
performance over multipath TCP”. In: Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies. ACM. 2015, p. 5 (cit.
on pp. 2, 26).

[20] IEEE. “IEEE Standard for Definitions of Terms for Antennas”. In: IEEE Std
145-2013 (Revision of IEEE Std 145-1993) (Mar. 2014), pp. 1–50. doi: 10.

1109/IEEESTD.2014.6758443 (cit. on p. 9).
[21] René-Jean Essiambre, Gerard Foschini, Peter Winzer, and Gerhard Kramer.

“Capacity limits of fiber-optic communication systems”. In: Optical Fiber Com-
munication Conference. Optical Society of America. 2009, OThL1 (cit. on p. 13).

[22] Matthew Sargent and Mark Allman. “Performance within a fiber-to-the-home
network”. In: ACM SIGCOMM Computer Communication Review 44.3 (2014),
pp. 22–30 (cit. on p. 13).

124

http://www.oecd.org/sti/broadband/communications-outlook.htm
http://www.oecd.org/sti/broadband/communications-outlook.htm
https://www.oecd.org/sti/oecd-digital-economy-outlook-2017-9789264276284-en.htm
https://www.oecd.org/sti/oecd-digital-economy-outlook-2017-9789264276284-en.htm
https://ec.europa.eu/digital-single-market/en/news/study-broadband-coverage-europe-2017
https://ec.europa.eu/digital-single-market/en/news/study-broadband-coverage-europe-2017
https://ec.europa.eu/digital-single-market/en/news/study-broadband-coverage-europe-2017
https://www.akamai.com/us/en/resources/our-thinking/state-of-the-internet-report/global-state-of-the-internet-connectivity-reports.jsp
https://www.akamai.com/us/en/resources/our-thinking/state-of-the-internet-report/global-state-of-the-internet-connectivity-reports.jsp
https://www.akamai.com/us/en/resources/our-thinking/state-of-the-internet-report/global-state-of-the-internet-connectivity-reports.jsp
https://doi.org/10.17487/RFC6419
https://www.rfc-editor.org/rfc/rfc6419.txt
https://doi.org/10.17487/RFC6824
https://www.rfc-editor.org/rfc/rfc6824.txt
https://doi.org/10.1109/IEEESTD.2014.6758443
https://doi.org/10.1109/IEEESTD.2014.6758443

Bibliography

[23] Péter Szilágyi and Csaba Vulkán. “LTE user plane congestion detection and
analysis”. In: 2015 IEEE 26th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC). IEEE. 2015, pp. 1819–
1824 (cit. on p. 15).

[24] Jeffrey Erman, Vijay Gopalakrishnan, Rittwik Jana, and Kadangode K Ra-
makrishnan. “Towards a spdy’ier mobile web?” In: IEEE/ACM Transactions
on Networking 23.6 (2015), pp. 2010–2023 (cit. on p. 15).

[25] Florian Metzger, Albert Rafetseder, Peter Romirer-Maierhofer, and Kurt Tutschku.
“Exploratory analysis of a GGSN’s PDP context signaling load”. In: Journal of
Computer Networks and Communications 2014 (2014) (cit. on p. 15).

[26] Ookla. Speedtest Market Reports. https://www.speedtest.net/reports/, last
accessed 21. May 2019. 2018 (cit. on p. 17).

[27] R. Braden (Ed.) Requirements for Internet Hosts - Communication Layers. RFC
1122 (Internet Standard). RFC. Updated by RFCs 1349, 4379, 5884, 6093, 6298,
6633, 6864, 8029. Fremont, CA, USA: RFC Editor, Oct. 1989. doi: 10.17487/
RFC1122. url: https://www.rfc-editor.org/rfc/rfc1122.txt (cit. on p. 19).

[28] Adnan Aijaz, Hamid Aghvami, and Mojdeh Amani. “A survey on mobile data
offloading: technical and business perspectives”. In: IEEE Wireless Communi-
cations 20.2 (2013), pp. 104–112 (cit. on p. 20).

[29] Rachad Maallawi, Nazim Agoulmine, Benoit Radier, and Tayeb Ben Meriem.
“A comprehensive survey on offload techniques and management in wireless
access and core networks”. In: IEEE Communications Surveys & Tutorials 17.3
(2015), pp. 1582–1604 (cit. on p. 20).

[30] Sven Wiethölter, Marc Emmelmann, Robert Andersson, and Adam Wolisz.
“Performance evaluation of selection schemes for offloading traffic to IEEE
802.11 hotspots”. In: 2012 IEEE International Conference on Communications
(ICC). IEEE. 2012, pp. 5423–5428 (cit. on p. 21).

[31] Claudio Rossi, Narseo Vallina-Rodriguez, Vijay Erramilli, Yan Grunenberger,
Laszlo Gyarmati, Nikolaos Laoutaris, Rade Stanojevic, Konstantina Papagian-
naki, and Pablo Rodriguez. “3GOL: Power-boosting ADSL using 3G OnLoad-
ing”. In: Proceedings of the ninth ACM conference on Emerging networking
experiments and technologies. ACM. 2013, pp. 187–198 (cit. on p. 21).

[32] Shubhada Gadgil, Shashi Ranjan, Divya Joshi, Mahima Mehta, Nadeem Akhtar,
and Abhay Karandikar. “Performance evaluation and viability of IFOM in het-
erogeneous LTE—WLAN network”. In: 2015 IEEE Wireless Communications
and Networking Conference (WCNC). IEEE. 2015, pp. 1524–1529 (cit. on p. 21).

[33] Mikhail Gerasimenko, Nageen Himayat, Shu-ping Yeh, Shilpa Talwar, Sergey
Andreev, and Yevgeni Koucheryavy. “Characterizing performance of load-aware
network selection in multi-radio (WiFi/LTE) heterogeneous networks”. In: 2013
IEEE Globecom Workshops (GC Wkshps). IEEE. 2013, pp. 397–402 (cit. on
p. 22).

125

https://www.speedtest.net/reports/
https://doi.org/10.17487/RFC1122
https://doi.org/10.17487/RFC1122
https://www.rfc-editor.org/rfc/rfc1122.txt

Bibliography

[34] Florian Wamser, Thomas Zinner, Phuoc Tran-Gia, and Jing Zhu. “Dynamic
bandwidth allocation for multiple network connections: improving user QoE
and network usage of YouTube in mobile broadband”. In: Proceedings of the
2014 ACM SIGCOMM workshop on Capacity sharing workshop. ACM. 2014,
pp. 57–62 (cit. on p. 22).

[35] Shuo Deng, Anirudh Sivaraman, and Hari Balakrishnan. “All your network are
belong to us: A transport framework for mobile network selection”. In: Pro-
ceedings of the 15th Workshop on Mobile Computing Systems and Applications.
ACM. 2014, p. 19 (cit. on p. 22).

[36] C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control for Multi-
path Transport Protocols. RFC 6356 (Experimental). RFC. Fremont, CA, USA:
RFC Editor, Oct. 2011. doi: 10.17487/RFC6356. url: https://www.rfc-editor.
org/rfc/rfc6356.txt (cit. on p. 25).

[37] Jana Iyengar and Martin Thompson. QUIC: A UDP-Based Multiplexed and
Secure Transport. Internet Draft draft-ietf-quic-transport-20. IETF, Apr. 2019
(cit. on pp. 26, 120).

[38] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Kra-
sic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar,
et al. “The quic transport protocol: Design and internet-scale deployment”. In:
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. ACM. 2017, pp. 183–196 (cit. on pp. 26, 120).

[39] Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier Bonaventure. “Exper-
imental evaluation of multipath TCP schedulers”. In: Proceedings of the 2014
ACM SIGCOMM workshop on Capacity sharing workshop. ACM. 2014, pp. 27–
32 (cit. on p. 26).

[40] Hang Shi, Yong Cui, Xin Wang, Yuming Hu, Minglong Dai, Fanzhao Wang,
and Kai Zheng. “STMS: Improving MPTCP Throughput Under Heterogeneous
Networks”. In: 2018 USENIX Annual Technical Conference (USENIX ATC 18).
2018, pp. 719–730 (cit. on p. 26).

[41] Yihua Ethan Guo, Ashkan Nikravesh, Z Morley Mao, Feng Qian, and Sub-
habrata Sen. “Accelerating multipath transport through balanced subflow com-
pletion”. In: Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking. ACM. 2017, pp. 141–153 (cit. on p. 26).

[42] Yeon-sup Lim, Erich M Nahum, Don Towsley, and Richard J Gibbens. “ECF:
An MPTCP path scheduler to manage heterogeneous paths”. In: Proceedings of
the 13th International Conference on emerging Networking EXperiments and
Technologies. ACM. 2017, pp. 147–159 (cit. on p. 26).

[43] HyunJong Lee, Jason Flinn, and Basavaraj Tonshal. “RAVEN: Improving In-
teractive Latency for the Connected Car”. In: Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking. ACM. 2018,
pp. 557–572 (cit. on p. 26).

126

https://doi.org/10.17487/RFC6356
https://www.rfc-editor.org/rfc/rfc6356.txt
https://www.rfc-editor.org/rfc/rfc6356.txt

Bibliography

[44] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. “MP-DASH: Adap-
tive video streaming over preference-aware multipath”. In: Proceedings of the
12th International on Conference on emerging Networking EXperiments and
Technologies. ACM. 2016, pp. 129–143 (cit. on p. 26).

[45] R. Stewart (Ed.) Stream Control Transmission Protocol. RFC 4960 (Proposed
Standard). RFC. Updated by RFCs 6096, 6335, 7053. Fremont, CA, USA: RFC
Editor, Sept. 2007. doi: 10.17487/RFC4960. url: https://www.rfc-editor.org/
rfc/rfc4960.txt (cit. on p. 26).

[46] Varun Singh, Saba Ahsan, and Jörg Ott. “MPRTP: multipath considerations
for real-time media”. In: Proceedings of the 4th ACM Multimedia Systems Con-
ference. ACM. 2013, pp. 190–201 (cit. on p. 27).

[47] Juhoon Kim, Yung-Chih Chen, Ramin Khalili, Don Towsley, and Anja Feld-
mann. “Multi-source multipath HTTP (mHTTP): A proposal”. In: ACM SIG-
METRICS Performance Evaluation Review 42.1 (2014), pp. 583–584 (cit. on
p. 27).

[48] Ashkan Nikravesh, Yihua Guo, Xiao Zhu, Feng Qian, and Z Morley Mao. “MP-
H2: A Client-only Multipath Solution for HTTP/2”. In: MobiCom. ACM (2019)
(cit. on p. 27).

[49] Quentin De Coninck and Olivier Bonaventure. “Multipath quic: Design and
evaluation”. In: Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies. ACM. 2017, pp. 160–166 (cit. on
p. 27).

[50] D. Thaler (Ed.) et al. Default Address Selection for Internet Protocol Version 6
(IPv6). RFC 6724 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor,
Sept. 2012. doi: 10.17487/RFC6724. url: https://www.rfc-editor.org/rfc/

rfc6724.txt (cit. on p. 30).
[51] Olivier Bonaventure. Apple uses Multipath TCP. http://blog.multipath-tcp.

org/blog/html/2018/12/15/apple_and_multipath_tcp.html. 2018 (cit. on p. 31).
[52] Olivier Bonaventure. Which servers use Multipath TCP? http://blog.multipath-

tcp.org/blog/html/2018/12/19/which_servers_use_multipath_tcp.html. 2018
(cit. on p. 31).

[53] Hasan Abbasi, Christian Poellabauer, Karsten Schwan, Gregory Losik, and
Richard West. “A quality-of-service enhanced socket API in GNU/Linux”. In:
Proceedings of the 4th Real-Time Linux Workshop, Boston, Massachusetts. Cite-
seer. 2002 (cit. on p. 31).

[54] Brett D Higgins, Azarias Reda, Timur Alperovich, Jason Flinn, Thomas J
Giuli, Brian Noble, and David Watson. “Intentional networking: opportunis-
tic exploitation of mobile network diversity”. In: Proceedings of the sixteenth
annual international conference on Mobile computing and networking. ACM.
2010, pp. 73–84 (cit. on p. 32).

127

https://doi.org/10.17487/RFC4960
https://www.rfc-editor.org/rfc/rfc4960.txt
https://www.rfc-editor.org/rfc/rfc4960.txt
https://doi.org/10.17487/RFC6724
https://www.rfc-editor.org/rfc/rfc6724.txt
https://www.rfc-editor.org/rfc/rfc6724.txt
http://blog.multipath-tcp.org/blog/html/2018/12/15/apple_and_multipath_tcp.html
http://blog.multipath-tcp.org/blog/html/2018/12/15/apple_and_multipath_tcp.html
http://blog.multipath-tcp.org/blog/html/2018/12/19/which_servers_use_multipath_tcp.html
http://blog.multipath-tcp.org/blog/html/2018/12/19/which_servers_use_multipath_tcp.html

Bibliography

[55] Naeem Khademi, David Ros, Michael Welzl, Zdravko Bozakov, Anna Brun-
strom, Gorry Fairhurst, Karl-Johan Grinnemo, David Hayes, Per Hurtig, Tom
Jones, et al. “NEAT: a platform-and protocol-independent internet transport
API”. In: IEEE Communications Magazine 55.6 (2017), pp. 46–54 (cit. on
pp. 32, 117).

[56] Brian Trammell, Michael Welzl, Theresa Enghardt, Gorry Fairhust, Mirja Kuehlewind,
Colin Perkins, Philipp Tiesel, and Christopher Wood. An Abstract Application
Layer Interface to Transport Services (work in progress). Internet Draft draft-
ietf-taps-interface-05. IETF, Nov. 2019 (cit. on pp. 32, 116, 118, 121).

[57] Diego Neves da Hora, Alemnew Sheferaw Asrese, Vassilis Christophides, Renata
Teixeira, and Dario Rossi. “Narrowing the gap between QoS metrics and Web
QoE using Above-the-fold metrics”. In: International Conference on Passive
and Active Network Measurement. Springer. 2018, pp. 31–43 (cit. on pp. 34,
91).

[58] Enrico Bocchi, Luca De Cicco, and Dario Rossi. “Measuring the quality of ex-
perience of web users”. In: ACM SIGCOMM Computer Communication Review
46.4 (2016), pp. 8–13 (cit. on pp. 35, 40, 91).

[59] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmer-
mann, Stephen D Strowes, and Narseo Vallina-Rodriguez. “A long way to the
top: significance, structure, and stability of internet top lists”. In: Proceedings
of the Internet Measurement Conference 2018. ACM. 2018, pp. 478–493 (cit. on
pp. 36, 88).

[60] Theresa Enghardt, Thomas Zinner, and Anja Feldmann. “Web Performance
Pitfalls”. In: PAM. Springer. 2019, pp. 286–303 (cit. on pp. 41, 88, 89).

[61] Thomas Stockhammer. “Dynamic adaptive streaming over HTTP–: standards
and design principles”. In: Proceedings of the second annual ACM conference
on Multimedia systems. ACM. 2011, pp. 133–144 (cit. on p. 42).

[62] Jonathan Kua, Grenville Armitage, and Philip Branch. “A survey of rate adap-
tation techniques for dynamic adaptive streaming over HTTP”. In: IEEE Com-
munications Surveys & Tutorials 19.3 (2017), pp. 1842–1866 (cit. on p. 43).

[63] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. “A buffer-based approach to rate adaptation: Evidence from a large
video streaming service”. In: ACM SIGCOMM Computer Communication Re-
view 44.4 (2015), pp. 187–198 (cit. on pp. 43, 84, 92).

[64] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. “BOLA: Near-
optimal bitrate adaptation for online videos”. In: IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communications.
IEEE. 2016, pp. 1–9 (cit. on pp. 43, 84, 92).

[65] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hoßfeld,
and Phuoc Tran-Gia. “A survey on quality of experience of HTTP adaptive
streaming”. In: IEEE Communications Surveys & Tutorials 17.1 (2015), pp. 469–
492 (cit. on pp. 44, 90).

128

Bibliography

[66] Alexander Raake, Marie-Neige Garcia, Werner Robitza, Peter List, Steve Göring,
and Bernhard Feiten. “A bitstream-based, scalable video-quality model for
HTTP adaptive streaming: ITU-T P.1203.1”. In: Ninth International Confer-
ence on Quality of Multimedia Experience (QoMEX). Erfurt: IEEE, May 2017.
isbn: 978-1-5386-4024-1. doi: 10 . 1109 / QoMEX . 2017 . 7965631. url: http : / /

ieeexplore.ieee.org/document/7965631/ (cit. on pp. 44, 90, 91, 93).
[67] Werner Robitza, Steve Göring, Alexander Raake, David Lindegren, Gunnar

Heikkilä, Jörgen Gustafsson, Peter List, Bernhard Feiten, Ulf Wüstenhagen,
Marie-Neige Garcia, Kazuhisa Yamagishi, and Simon Broom. “HTTP Adaptive
Streaming QoE Estimation with ITU-T Rec. P.1203 – Open Databases and
Software”. In: 9th ACM Multimedia Systems Conference. Amsterdam, 2018.
isbn: 9781450351928. doi: 10.1145/3204949.3208124 (cit. on pp. 44, 91).

[68] Michael Seufert, Nikolas Wehner, and Pedro Casas. “Studying the Impact of
HAS QoE Factors on the Standardized QoE Model P. 1203”. In: 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS). IEEE.
2018, pp. 1636–1641 (cit. on p. 44).

[69] Philipp S. Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feldmann.
“Socket Intents: Leveraging Application Awareness for Multi-access Connectiv-
ity”. In: ACM CoNEXT. Santa Barbara, California, USA: ACM, 2013, pp. 295–
300. isbn: 978-1-4503-2101-3. doi: 10.1145/2535372.2535405 (cit. on p. 45).

[70] Philipp Tiesel, Theresa Enghardt, and Anja Feldmann. Socket Intents (work
in progress). Internet Draft draft-tiesel-taps-socketintents-01. IETF, Oct. 2017
(cit. on p. 45).

[71] Steven Blake, David Black, Mark Carlson, Elwyn Davies, Zheng Wang, and
Walter Weiss. An architecture for differentiated services. Tech. rep. RFC 2475.
IETF, 1998 (cit. on p. 46).

[72] Theresa Enghardt and Cyrill Krähenbühl. A Vocabulary of Path Properties
(work in progress). Internet Draft draft-enghardt-panrg-path-properties-03. IETF,
Nov. 2019 (cit. on p. 52).

[73] Theresa Enghardt, Philipp S Tiesel, and Anja Feldmann. “Metrics for access
network selection”. In: Proceedings of the Applied Networking Research Work-
shop. ACM. 2018, pp. 67–73 (cit. on p. 52).

[74] Mirko Palmer. “Implementation and Evaluation of Multi-Access Policies for
MPTCP Path Management in User-Space”. MA thesis. TU Berlin, 2015 (cit.
on p. 60).

[75] Joel Sommers, Hyungsuk Kim, Paul Barford, and Paul Barford. “Harpoon: a
flow-level traffic generator for router and network tests”. In: ACM SIGMET-
RICS Performance Evaluation Review. Vol. 32. 1. ACM. 2004, pp. 392–392 (cit.
on p. 86).

[76] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen. “Com-
mute path bandwidth traces from 3G networks: analysis and applications”.
In: Proceedings of the 4th ACM Multimedia Systems Conference. ACM. 2013,
pp. 114–118 (cit. on pp. 87, 88, 105).

129

https://doi.org/10.1109/QoMEX.2017.7965631
http://ieeexplore.ieee.org/document/7965631/
http://ieeexplore.ieee.org/document/7965631/
https://doi.org/10.1145/3204949.3208124
https://doi.org/10.1145/2535372.2535405

Bibliography

[77] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Win-
stein, James Mickens, and Hari Balakrishnan. “Mahimahi: Accurate Record-
and-Replay for HTTP”. In: 2015 USENIX Annual Technical Conference (USENIX
ATC 15). 2015, pp. 417–429 (cit. on p. 89).

[78] Stefan Lederer, Christopher Müller, and Christian Timmerer. “Dynamic adap-
tive streaming over HTTP dataset”. In: Proceedings of the 3rd Multimedia Sys-
tems Conference. ACM. 2012, pp. 89–94 (cit. on pp. 89, 90, 92).

[79] YouTube Help. Live encoder settings, bitrates, and resolutions. https://support.
google.com/youtube/answer/2853702?hl=en, last accessed 25. June 2019. 2019
(cit. on p. 90).

[80] Tobias Hoßfeld, Florian Metzger, and Dario Rossi. “Speed Index: Relating the
Industrial Standard for User Perceived Web Performance to Web QoE”. In:
IEEE International Conference on Quality of Multimedia Experience. 2018 (cit.
on p. 91).

[81] Huyen T. T. Tran, Nam Pham Ngoc, Tobias Hoßfeld, Michael Seufert, and
Truong Cong Thang. Cumulative Quality Modeling for HTTP Adaptive Stream-
ing. 2019 (cit. on pp. 91, 119).

[82] Anna Brunstrom, Tommy Pauly, Theresa Enghardt, Karl-Johan Grinnemo,
Tom Jones, Philipp Tiesel, Colin Perkins, and Michael Welzl. Implementing
Interfaces to Transport Services (work in progress). Internet Draft draft-ietf-
taps-impl-05. IETF, Nov. 2019 (cit. on p. 117).

[83] Robert Kiefer, Erik Nordström, and Michael J Freedman. “From feast to famine:
managing mobile network resources across environments and preferences”. In:
2014 Conference on Timely Results in Operating Systems (TRIOS 14). 2014
(cit. on p. 117).

130

https://support.google.com/youtube/answer/2853702?hl=en
https://support.google.com/youtube/answer/2853702?hl=en

List of Figures

2.1 Architecture of a WiFi network. 8
2.2 Architecture of a cellular network. 15
2.3 Scenario where multiple access networks are available. 18
2.4 TCP and MPTCP handshakes. 24
2.5 Networking within a host. 28

3.1 Browser events and timings. 34
3.2 Effects of initial redirects. 36
3.3 Resource sizes: Differences due to data source for all resources. 39
3.4 Byte Index: Difference due to data source. 41

4.1 Access network selection using Socket Intents. 45

5.1 Network performance characteristics: Desired. 51
5.2 Network performance characteristics: Available in practice. 52

6.1 Policy model. 60

7.1 Architecture of the Socket Intents prototype. 77

8.1 Testbed setup. 86
8.2 ECDFs of video segment sizes for different videos in our workload. . . 90
8.3 Estimated network performance characteristics against shaping 93
8.4 Smoothed Round Trip Time (SRTT) variations with cross-traffic. . . . 95
8.5 Asymmetric scenario (network 1: 10 ms, 2 Mbit/s, network 2: 100ms,

20 Mbit/s) . 96
8.6 Empirical Cumulative Distribution Function (ECDF) of Above-The-

Fold Times for asymmetric scenario (network 1: 10 ms, 2 Mbit/s,
network 2: 100ms, 20 Mbit/s) . 97

8.7 ATF improvements vs. using the single “better” network (median [ms]
plus confidence intervals). 98

8.8 Page Load Time (PLT) improvements vs. using the single “better”
network (median [ms] plus confidence intervals). 98

8.9 Mean Opinion Score (MOS) improvements vs. using the single “better”
network (median [ms] plus confidence intervals). 99

8.10 Symmetric scenario with 10ms, 2Mbit/s. 101
8.11 “In the wild”: ECDFs of Above-The-Fold Times (ATF) 103
8.12 Capacity decrease scenario (median downstream capacity 327 kBit/s,

downstream capacity on network 2 varies with coefficient of variation
(cv) = 0.7). 104

8.13 Median MOS with confidence intervals for scaled Capacity Decrease
scenarios (cv =0.7). 106

131

List of Figures

8.14 Median MOS with confidence intervals for variable capacity scenarios
other than Capacity Decrease . 109

8.15 Median MOS with confidence intervals for scenarios with variable TCP
cross-traffic. 110

132

List of Tables

3.1 Object sizes: Accuracies for unencrypted resources. 39
3.2 Further Web performance pitfalls. 40

4.1 Socket Intents Definitions. 48

8.1 Emulated network scenarios. 88
8.2 Representation bitrates and resolutions. 89
8.3 Shaping levels for feasibility study . 94
8.4 Pearson coefficient between page size and best achieved PLT speedup:

Symmetric scenarios . 102

133

	Title Page
	Abstract
	Abstract (German)
	Contents
	1 Introduction
	1.1 Goals
	1.2 Contributions
	1.3 Structure of the Thesis

	2 Background and Related Work
	2.1 Access Networks
	2.1.1 WiFi Networks
	2.1.1.1 Wireless Links Using 802.11
	2.1.1.2 Uplinks

	2.1.2 Cellular Networks
	2.1.3 Access Network Performance

	2.2 Using Multiple Access Networks
	2.2.1 Multiple Access Network Scenario
	2.2.2 Distributing Traffic Using Mobile Offloading
	2.2.3 Multipath Protocols
	2.2.3.1 MPTCP Basics
	2.2.3.2 MPTCP Performance
	2.2.3.3 Other Multipath Protocols

	2.3 Systems Support
	2.3.1 Networking Within Hosts
	2.3.2 Support For Multiple Access Networks Within Operating Systems

	3 Assessing Application Performance
	3.1 Web Browsing
	3.1.1 Performance Metrics Definitions and Data Sources
	3.1.1.1 Load Times
	3.1.1.2 Resource Count and Size

	3.1.2 How To Reliably Measure Web Metrics
	3.1.2.1 Web Metrics Comparison Methodology
	3.1.2.2 Redirects
	3.1.2.3 Resource Count and Size
	3.1.2.4 Impact on Byte Index

	3.2 Video Streaming
	3.2.1 Overview
	3.2.2 Measuring Video Streaming Performance

	4 Expressing Application Needs Using Socket Intents
	5 Network Performance Characteristics for Informed Access Network Selection
	5.1 Desired Network Performance Characteristics
	5.2 Network Performance Characteristics Collected in Practice

	6 Access Network Selection Policies
	6.1 Policy Design
	6.2 Rule-based ians policies
	6.3 Threshold Policy for Web Browsing
	6.3.1 Threshold Policy Algorithm in Detail
	6.3.2 Latency and Capacity Computations
	6.3.3 Resource Load Time Estimation
	6.3.4 Variant: Threshold Policy with Penalty
	6.3.5 Application Support for the Threshold Policy

	6.4 Optimist and Pessimist Policy for Video
	6.4.1 Optimist and Pessimist Policy Algorithm in Detail
	6.4.2 Optimist Policy: Considering an Alternative Based on Best Case
	6.4.3 Pessimist Policy: Considering an Alternative Based on Worst Case

	6.5 Selective MPTCP Policy for Video

	7 Socket Intents Prototype
	7.1 Prototype Architecture
	7.2 Socket Intents APIs
	7.2.1 Socket Intents Per Connection: Enhanced Socket API
	7.2.2 Socket Intents Per Transfer: Socketconnect API

	7.3 Implementing Access Network Selection
	7.3.1 Multi Access Manager
	7.3.2 Collecting Network Performance Characteristics
	7.3.3 Access Network Selection Policy Implementation

	7.4 Applications Supporting Socket Intents
	7.4.1 Web Proxy
	7.4.2 Video Player

	8 Impact of Informed Access Network Selection on Application Performance
	8.1 Network Scenarios
	8.2 Workload
	8.2.1 Web
	8.2.2 HAS

	8.3 Performance Metrics
	8.4 Course of Experiments
	8.5 Network Characteristics Feasibility Study
	8.6 IANS Benefits For Web Browsing
	8.6.1 Asymmetric Network Scenario: In-depth Discussion
	8.6.2 Systematic Study of Scenarios
	8.6.3 Performance Benefits For Different Web Pages
	8.6.4 Performance In The Wild

	8.7 IANS Benefits For Video Streaming
	8.7.1 Capacity Decrease Scenario: In-Depth Discussion
	8.7.2 Systematic Study of Variable Capacity Scenarios
	8.7.3 Cross-Traffic Scenarios

	9 Conclusion
	9.1 Summary
	9.2 Discussion and Lessons Learned
	9.3 Future Work
	9.4 Outlook: Better APIs for a Better Internet

	Glossary
	Bibliography
	List of Figures
	List of Tables

