
This paper has been been published at the
Applied Networking Research Workshop 2018 (ANRW '18).

The published version is available at
https://dl.acm.org/citation.cfm?id=3232764.

© ACM, 2018

https://dl.acm.org/citation.cfm?id=3232764

Metrics for access network selection
Theresa Enghardt

TU Berlin
theresa@inet.tu-berlin.de

Philipp S. Tiesel
TU Berlin

philipp@inet.tu-berlin.de

Anja Feldmann
Max Planck Institute for

Informatics
anja@mpi-inf.mpg.de

ABSTRACT
Today, most mobile devices can connect to the Internet via
multiple access networks. To make an informed choice of
which network to use, a host requires accurate and up to
date performance metrics. However, so far such network
characteristics are typically not readily available and can be
highly volatile.
We explore what performance metrics are available on a

host by monitoring and aggregating them within our Socket
Intents prototype. These metrics then feed into our access
network selection policies to improve page load time in a
testbed emulating various network characteristics.

We find that minimum and median Smoothed Round Trip
Time and maximum observed download rate are useful met-
rics in the sense that they enable us to speed up web page
load times by up to 65% compared to using a single interface.

CCS CONCEPTS
•Networks→Network performance analysis; Network
dynamics; Network monitoring; Wireless local area networks;

KEYWORDS
Access networks, Performance Monitoring, Network Proper-
ties, Multi-Access Connectivity

1 INTRODUCTION
In today’s Internet, a host often has multiple access networks
available to choose from. The configured default is not al-
ways the best option, as access networks not only differ in,
e.g., latency, bandwidth, or loss, but also across time. Indi-
vidual performance metrics can be estimated by querying
the current state of network interfaces or transport protocol

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ANRW ’18, July 16, 2018, Montreal, QC, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5585-8/18/07. . . $15.00
https://doi.org/10.1145/3232755.3232764

stacks. Yet, these metrics have to be collected and aggregated
to get a comprehensive understanding of access network
performance, To our knowledge, so far such metrics are not
easily available to any host.

In this paper, we explore which performance metrics can
be gathered and how to use them for access network selec-
tion. Next we show how Socket Intents policies based on
these metrics can improve web performance.
The Socket Intents Prototype, first presented in [12], is a

client-side software that enables access network selection
on a host. An application can use the Socket Intents API
to specify what it knows about its upcoming traffic. This
information then serves as input to the access network selec-
tion policy, along with current performance metrics. Socket
Intents is based on the observation that knowing about per-
formance metrics alone is not enough. An access network
selection policy also needs to know what to optimize for, as
application have different requirements for different kinds of
traffic. For instance, when downloading small objects, load
time is dominated by Round Trip Time, while when down-
loading larger objects, bandwidth has a higher impact. Based
on both the size of a transfer and the current performance
metrics, our access network selection policy chooses the
more suitable access network.

We demonstrate the feasibility of our approach in a testbed,
in which we emulate a range of typical network characteris-
tics. For these characteristics, we show how accurately our
prototype captures the performance metrics, and how our
access network selection policies can speed up page load
time. Such policies can be made available through novel pro-
gramming interfaces such as standardized by the Transport
Services Working Group [5].

2 BACKGROUND
We briefly discuss existing tools to query performance met-
rics and systems to handle multiple access networks. Then
we present our Socket Intents approach.

2.1 Querying Performance metrics
To understand network performance from a host perspective,
there are many command line tools to read network interface
counters including ethtool [8]. Furthermore, the iproute2
utilities [7] contain tools such as socketstat, which can query
the current status of connections from the kernel. However,

https://doi.org/10.1145/3232755.3232764

ANRW ’18, July 16, 2018, Montreal, QC, Canada Enghardt et al.

none of these tools aggregates performance metrics in a
central place on the host, so they can serve as input for
access network selection. Performance metrics can also be
collected within the network [6, 9, 17]. But such metrics
are typically not made available to hosts. Furthermore, if
they were made available to the host by the ISP, this would
introduce the problem of whether the data can be trusted.

2.2 Multiple Access Networks
Most related work on using multiple access networks focuses
on WiFi off- or onloading [1, 11], where a network operator
controls multiple access networks and can then shift traffic
between them. Our work instead empowers the end host
to use its own access network selection policy according
to performance metrics. Commercial systems have started
exploring this [2], but they take fewer metrics into account.

When paths over multiple access networks are combined
using MPTCP, performance differences also play a role, as ex-
amined in [3, 4, 10]. While an MPTCP scheduler handles per-
formance differences implicitly, we explicitly provide perfor-
mance metrics to an access network selection policy, which
can then use either of the available networks, or combine
their capacities using MPTCP.

2.3 Socket Intents Prototype
Our Socket Intents prototype1, introduced in [12] and pre-
sented in detail in [16], provides access network selection to
applications that use our Socket Intents API. Applications
specify their Intents, pieces of information regarding what
the application knows about its own communication. Intents
can be characteristics, expectations, or preferences. In this
paper we focus on the “Size to be Received”, which is the
number of bytes that the application expects to receive as
the result of an outgoing message.

Once an application has specified the Intents for its traffic
through the Socket Intents API, the access network selection
policy chooses one of the local interfaces and addresses, thus,
one of the available access networks, based onmetrics and In-
tents2. On the chosen interface, the policy can decide to open
a new connection, or, if there are already open connections
over this interface, decide to reuse one of them.

2.4 Multi Access Manager
Within the Socket Intents prototype, the component that
gathers performance metrics and hosts the access network
selection policy is called the Multi Access Manager (MAM)3.

1The source code is available at https://github.com/fg-inet/socket-intents
2Our policy can also select between multiple endpoints, e.g., multiple IP
addresses resolved from the same host name.
3The MAM is a daemon running on the host in user space. It is written in C
and runs on Linux and Mac OS X.

When started it gathers a list of currently configured network
interfaces and their IP addresses. It then starts gathering per-
formance metrics, see Section 3.2, and makes them available
to the access network selection policy, see Section 4.

3 GATHERING PERFORMANCEMETRICS
For selecting an appropriate access network for an upcoming
communication unit the host needs performance estimates
for each interface. Such estimates can be derived from per-
formance metrics gathered on the host at different layers.
We focus on passive measurements, as we want to mini-

mize overhead and not increase congestion on the wireless
channel and access link or use up a user’s data volume quota
on cellular networks. This implies that we only get perfor-
mance metrics for interfaces we use. Also, the gathered met-
rics are most useful to estimate performance for paths to
destinations that the host communicates with. Furthermore,
metrics are influenced by the traffic patterns, e.g., the amount
of data and the number of connections.

3.1 Metrics Description
In the following, we list candidate metrics, categorized by
the layer on which we can observe them on the host.
Physical Layer Metrics. As the first hop often dominates
Round Trip Time (RTT) and bandwidth, and is often wire-
less, we consider the following metrics relevant for access
network selection.

Signal Strength is often used to select the best Access
Point or base station. Lower signal strength, relative to
the same noise floor, is correlated with higher bit error
rates and lower modulation rates. Low signal strength
can lead to higher RTTs, but above a certain threshold,
other metrics have a higher influence, see [14].

Modulation Rate determines howmany bytes are trans-
mitted within a symbol on the wireless channel. A high
modulation rate leads to a higher possible bitrate, given
sufficient signal strength.

Channel Utilization indicates the percentage of time
during which there is a transmission on the wireless
medium. A high channel utilization indicates a con-
gested wireless network.

Network and Transport Layer Metrics. As some performance
bottlenecks within the first few hops cannot be observed
on the physical layer, we also explore higher layer metrics.
Some of these metrics may be correlated with physical layer
properties or with each other.

Available bandwidth is the number of bytes per sec-
ond that can be sent or received over a given interface.

Round Trip Time (RTT) is the time from sending a
packet to receiving the response. Round Trip Time

Metrics for access network selection ANRW ’18, July 16, 2018, Montreal, QC, Canada

is typically observed in the transport protocol stack,
e.g., per TCP connection.

Round Trip Time Variation is the disparity of RTT
values either over time or among connections. A high
RTT variation often indicates congestion [15].

Packet Loss is the percentage of sent packets not re-
ceived on the other end, e.g., due to being dropped
along the path. Packet loss is not directly observable
from the end hosts. However, protocols that provide
reliable transport, e.g., TCP, SCTP, and QUIC, do keep
track of which data was actually received by the other
end in order to retransmit lost data. Therefore, this
information can be used to infer packet loss.

3.2 Implementation
Our Multi Access Manager (MAM) periodically queries met-
rics4, aggregates, and logs them. We choose this approach
rather than gathering the metrics in an event-based manner,
e.g., using BPF, because it makes performance metrics eas-
ier to log and compare. Yet, periodically querying metrics
may increase energy consumption, as periodically query-
ing a driver prevents it from going into power save mode.
MAM stores performance metrics for a certain time5, and
then times them out, i.e., resets them to their default value6.
Physical Layer. As physical layer metrics are available from
WiFi drivers, MAM queries them using Netlink. Monitoring
similar metrics on a cellular interface is more complicated
since it is usually not readily available from the driver.

WiFi Signal Strength of the last received data frame.
WiFi Modulation Rate of the most recently sent data

frame and the last received frame.
WiFi Channel Utilization as parsed from QBSS infor-

mation elements in beacon frames7.

Network Layer. We query this information from the network
interface driver.

Maximum download rate: Assuming that the bandwidth
bottleneck for a path is within the access network, we
approximate available bandwidth by monitoring the
maximum observed download rate on the interface.

4MAM queries metrics every n milliseconds. A callback interval of 100 ms
has empirically proven to show good results. Longer query intervals result
in lower performance overhead on the system, but also the metrics are less
current.
55 minutes works for us.
6We set the default values to 0. In this case, metrics will not be taken into
account by the access network selection policy.
7There is no way to get QBSS from Netlink, so we set up a monitor interface
that sniffs on the same channel as the WiFi interface that sends and receives
our data. This monitor interface then filters out Beacon frames using BPF
and parses the QBSS information elements.

To calculate this rate, we query the interface coun-
ters from the network driver, compute the difference
between successively read counters, and divide the
difference by time since the last reading.

Transport Layer. As these metrics are readily available, we
query properties of current TCP connections from the Linux
kernel via Netlink.

Smoothed Round Trip Times (SRTTs): If we assume
that the highest latency link long the path is in the
access network, we can treat the RTT observed on a
TCP connection as an estimate for the RTT over this
access network. Thus, we aggregate Smoothed RTTs
for all connections8 on the same prefix. As a lower
bound, we compute the minimum. As a typical value
of what a new connection can expect, we compute the
median of the SRTT values. If the highest RTT link
is not in the access network, SRTTs may vary across
destination, so it may make sense to differentiate per
destination.

Round Trip Time Variation: We compute RTT varia-
tion in two ways: By calculating the variation of the
SRTT values we observe over the same prefix, and by
looking at the SRTT variation values for each individ-
ual connection and calculating the median.

Packet Loss: Recent TCP implementations keep track
of retransmitted packets and packets deemed lost. We
query these counters and divide them by the total num-
ber of packets sent to approximate upstream packet
loss. Note that these loss counters are only estimates, as
there is no indication whether retransmits are caused
by link errors, congestion, or re-ordering. On the re-
ceiver side, TCP implementations do not keep track of
lost and re-ordered bytes. If they did, we could only
estimate the amount of lost and re-ordered bytes9, but
have no certainty about how many packets were lost.

4 ACCESS NETWORK SELECTION
To take advantage of the above performance metrics our
Socket Intents Prototype includes the following access net-
work selection policies to improve web page load time. Each
policy can choose among all available interfaces for each
communication unit, e.g., each object to be downloaded.

8We query current TCP connections that are not in SYN-SENT, SYN-RECV,
TIME-WAIT or CLOSE state, as in these states, the SRTT is set to zero.
9Distinguishing between lost and re-ordered bytes/packets is only possible
in retrospect, i.e., in case a packet arrives out-of-order, but within one RTT,
it can be considered re-ordered. If it arrives later, it can be a considered
being a re-transmission of a lost packet.

ANRW ’18, July 16, 2018, Montreal, QC, Canada Enghardt et al.

4.1 Threshold Policy
Our Threshold Policy uses the fact that for smaller objects, la-
tency dominates load time, while for large objects, bandwidth
is more crucial. Thus, our Threshold Policy schedules small
objects over the network with lower latency and distributes
larger objects according to available download capacity.

To determine the threshold of when an object is considered
small, the policy first predicts whether latency or bandwidth
has a higher influence on the object load, i.e., which of these
components account for a larger share in estimated load time.
The latency component of the load time is approximated by
the minimum SRTT if an existing connection is available for
reuse, or twice this value if a new connection has to be set up.
For computing the bandwidth component, the policy divides
the object size by the estimated bandwidth capacity10. If the
latency component is greater than the bandwidth compo-
nent, the Threshold policy considers the object to be small
and schedules it over the lower latency network. Otherwise,
the policy estimates the load time over all available access
networks. For connection reuse, it adds the median SRTT
and the bandwidth component. Here, it uses the median
SRTT because it assumes a longer object load and, thus, the
connection will be affected by congestion and crosstraffic in
a similar way as the other connections. For new connections,
the policy computes the number of slow start rounds that
the object will need until either the available capacity has
been reached or the object has been fully retrieved. Finally,
it compares the approximated load times and chooses the
interface with the shorter predicted load time.

4.2 Threshold Policy With Penalty
Although the Threshold Policy takes other traffic that it has
seen into account for its predictions, we find that it does not
sufficiently consider external influences, such as crosstraffic.
Thus, the Threshold Policy with Penalty additionally penal-
izes interfaces with high current external interference. After
computing the download estimates over both access net-
works in a similar way as the Threshold Policy, it increases
the load time estimate based on the penalty metrics. As WiFi
crosstraffic accounts for a lot of external interference, we
use WiFi utilization as penalty by increasing the load time
estimate on a WiFi interface. This has the advantage that
a WiFi with high crosstraffic will be utilized less, but the
disadvantage that WiFi utilization cannot be compared with
other access network technologies.

Initially, we experimented with SRTT variations to derive
penalty, as a high variation of RTTs indicates congestion.
However, we found that none of our SRTT variation metrics

10The capacity is calculated by dividing the recently observed maximum
download rate on the access network by the number of active connections
on the same network, as seen by the policy.

Access

Point

Shaper Web serverClient

Crosstraffic client

if1

if2

Figure 1: Testbed setup.

allows our policy to reliably distinguish between access net-
work with and without crosstraffic. The mean of all SRTT
variations currently observed on an interface suffered from
higher RTT variation on links with higher base RTT even
when the congestion level was similar, thus, underestimating
congestion on the lower RTT link. The mean SRTT varia-
tions normalized by the minimum SRTT was too similar and
gave the higher RTT link an unfair advantage. Therefore, we
focus on WiFi utilization.

4.3 Biased Choice Policy
The above policies have the two limitations. First, load time
estimation may not be accurate and, second, statistics may be
out of date. Therefore, our Biased Choice Policy distributes
objects across access networks in a probabilistic manner. The
policy calculates a probability with which to use an access
network based on the predicted load time. Lower predicted
load times will result in a higher bias, e.g., if the predicted
completion time on one of the access networks is 5 times
higher than on the other, then this network is 5 times less
likely to be chosen.We also combine the Biases Choice Policy
with the Penalty Policy by reducing the bias for interfaces
with high crosstraffic, i.e., current WiFi utilization.

5 EVALUATION
The objective of our evaluation is twofold: (1) We demon-
strate feasibility of metrics-based access network selection
and (2) we study the impact of our policies.

5.1 Setup
In our evaluation we want to observe metrics across a wide
range of access network characteristics. Therefore, we set
up a testbed where we control traffic, crosstraffic, and traffic
shaping. As our metrics gathering relies on traffic being
present on the network, we use web traffic. To this end,
we set up a web server with static web pages containing
a number of images of different sizes. Our focus is access
network selection from the host, so we set up a notebook as
the client, which can reach the web server through multiple
access networks via a traffic shaper, see Figure 1.

We want to study actual WiFi characteristics, so the client
connects to one of the access networks via a WiFi Access

Metrics for access network selection ANRW ’18, July 16, 2018, Montreal, QC, Canada

Table 1: Shaping levels for feasibility study
Property Levels

WiFi RTT: 20, 50, 100, 200, or 400 ms.
WiFi bandwidth up: 0.1, 0.25, 0.5, 1, 2, 4, or 6 Mibit/s.
WiFi bandwidth down: 0.25, 0.5, 2, 4, 8, 12 or 20 Mibit/s.
WiFi loss: none, 0.1, 0.25, or 0.5%.
WiFi crosstraffic: none, 50, 90, 150, or 200 Mbit/s.
Wired RTT: 60, 120, 180, 350, or 700 ms.
Wired bandwidth up: 0.05, 0.3, 0.7, 1.8, 3, or 5 Mibit/s.
Wired bandwidth down: 0.1, 0.5, 1, 2.5, 5, 15, or 20 Mibit/s.

Point11. To emulate different uplink characteristics, our traf-
fic shaper imposes latency, rate limiting, and packet loss on
traffic between the web server and each of the access net-
works12. Furthermore, we study how crosstraffic on the WiFi
influences our metrics. Accordingly, we set up another client
that is closer to the AP13 and that sends crosstraffic in one
continuous UDP flow during the entire page load. To gener-
ate realistic web traffic, the client runs the Firefox browser
instrumented using Selenium. Modern web browsers are
highly complex, so we implemented Socket Intents support
within a client-side HTTP proxy. Our policies use the “Size
to be Received” Intent. To obtain this information, the HTTP
proxy first fetches the initial 4KB of each object and, then,
reads the Content-Length header to determine its full size.
Based on the size and on the observed performance metrics,
the policy then chooses the access network on which the
proxy should fetch this object. Once all objects of a web page
have been retrieved, the browser logs the page load time14.

5.2 Feasibility study
To demonstrate the feasibility of estimating access network
characteristics based on metrics observed on the host, we
compare our metrics with the actual shaped values. We use
a wide range of typical characteristics of both cellular and
WiFi networks[13], see Table 1. As the observed maximum
download rate depends on the amount of traffic seen, our
workload needs to saturate the capacity of the bottleneck
link to get accurate results. To explore what traffic is needed
to fill the link, our client fetches web pages of increasing
sizes: 32 objects of 1 KB, 32 objects of 10 KB, 8 objects of 100
KB, 2 objects of 1 MB, and 32 objects of 100 KB.

11We use 802.11n on channel 36 on the 5 GHz spectrum, where there are
no other BSSIDs.
12Our traffic shaping is automated using Augmented Traffic Control (ATC),
see https://github.com/facebook/augmented-traffic-control. We had to con-
figure ATC to shape rather than police traffic, and in addition we manually
set appropriate queue sizes to avoid buffer bloat.
13Both AP and the crosstraffic client are located in the same office, while
our web client is in a different office across the hall on the same floor.
14We record the total duration of a page load according to the HAR file.
These page load times include processing and rendering times, but as we
compare loads of the same page and we do not use JavaScript, rendering
should impose a similar overhead each time.

Figure 2 shows our three main metrics, maximum down-
load rate, minimum SRTT, and median SRTT, compared to
the shaper settings with which they were measured. Fig-
ure 2a shows the estimated maximum download rates that
the MAM observes on the WiFi and wired links during the
last page load in a run. Over the WiFi with no crosstraffic
and over the wired access network, the estimated maximum
download rate corresponds to the shaped download rate in
all cases except for 20000 kBit/s. In the latter case, the bot-
tleneck link only gets saturated during the last page load,
which is why we see the estimated maximum download
rate increase up to the full 20000 kBit/s. With crosstraffic
on the WiFi, the estimated maximum download rate varies
around the shaped rate due to random contention. When the
page load collides with the crosstraffic, the WiFi driver at
the client will discard any affected frame, thus, the observed
download rate drops, as it only includes correctly received
packets. Afterwards, the WiFi Access Point will retransmit
any lost frames on Layer 2, resulting in a temporarily higher
download rate than what is shaped on the bottleneck link
upstream of the AP. Despite these irregularities, we conclude
that the observed maximum download rate gives MAM an
idea about the bottleneck download rate in our access net-
work. We can account for outliers by making the maximum
download rate more robust, i.e., by only taking values into
account that are frequently observed.
Figure 2b shows the minimum Smoothed Round Trip

Times (SRTTs) seen by MAM for different shaped RTTs15 for
all page loads. In most cases the minimum SRTT corresponds
to the shaped RTT. In the presence of high crosstraffic with
either 150 Mbit/s or 200 Mbit/s constant UDP traffic on the
wireless channel, the MAM sees a few outliers in cases where
all TCP connections are affected by the crosstraffic. However,
we note that in most cases, the minimum SRTT observed by
MAM is a good estimate for the minimum SRTT that can
be achieved on the path. Figure 2c shows the median of the
SRTTs that MAM observes for the current TCP connections
for different shaped download bandwidths. As congestion
on the path has a high impact on the SRTTs of the connec-
tions, the observed values are considerably higher when a
large workload is fetched on a network with low bandwidth.
However, for 2000 kbit/s and higher, the observed median
SRTTs are close to the shaped RTTs, even with crosstraffic
on the WiFi. We conclude that we can use the median SRTT
observed over an interface as an estimate of the RTT that
a download would experience if it was scheduled on this
interface. The observed WiFi metrics are in line with our
expectations. As we cannot monitor downstream packet loss,
we exclude it from our feasibility study.

15We shape every RTT as symmetrical latencies on the up- and downlink.

ANRW ’18, July 16, 2018, Montreal, QC, Canada Enghardt et al.

0 5000 10000 15000 20000

0
5
0
0
0

1
5
0
0
0

2
5
0
0
0

Shaped downstream rate [kBit/s]

O
b
s
e
rv

e
d
 d

o
w

n
lo

a
d
 m

a
x
 r

a
te

 [
k
B

it
/s

]

WiFi (No crosstraffic)

WiFi (50Mbit/s)

WiFi (90Mbit/s)

WiFi (150 Mbit/s)

WiFi (200 Mbit/s)

Wired

(a) Observed maximum download rate

0 100 200 300 400 500 600 700

0
1
0
0

3
0
0

5
0
0

7
0
0

Shaped RTT [ms]

O
b
s
e
rv

e
d
 m

in
 s

rt
t
[m

s
]

WiFi (No crosstraffic)

WiFi (50Mbit/s)

WiFi (90Mbit/s)

WiFi (150 Mbit/s)

WiFi (200 Mbit/s)

Wired

(b) Observed minimum SRTT

0 100 200 300 400 500 600 700

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Shaped RTT [ms]

O
b
s
e
rv

e
d
 m

e
d
ia

n
 s

rt
t
[m

s
]

Bandwidth between 100 and 250

Bandwidth between 500 and 1000

Bandwidth between 2000 and 2500

Bandwidth between 5000 and 8000

Bandwidth between 12000 and 15000

Bandwidth = 20000

(c) Observed median SRTT
Figure 2: Comparison of metrics observed by MAM against shaped parameters

Table 2: Policy scenarios: Network parameters.
WiFi Wired
RTT Down Up RTT Down Up
ms MBit/s MBit/s ms MBit/s MBit/s

Both good 20 20.0 6.0 60 15.0 5.0
Both bad 200 2.0 0.5 350 1.0 0.7
Asymmetric 50 2.0 0.5 350 15.0 5.0

5.3 Load time speedups
Given that our metrics provide reasonable performance esti-
mates, we explore whether using them as input to our access
network selection policies can speed up page load time. To
do so, we fetch the same page multiple times, first over each
access network individually and, then, using the policies
presented in Section 4.

We emulate three scenarios, see Table 2: Both access net-
work have “good” performance, to check whether we can still
get a performance benefit, both access network have “bad”
performance, to see whether access network selection can
help in challenging environments, and an asymmetric case in
which neither network is “good” nor “bad”, but one provides
a high bandwidth while the other has low latency. Our client
downloads static web pages with objects of different sizes.
In Figure 3 we can see the median page load times of

three pages. Using only the wired interface results in the
highest load times except in the asymmetric case for the two
larger workloads, since in these cases the higher bandwidth
over the wired interface is more useful than the lower RTT
over the WiFi. Using the Threshold Policy, which distributes
traffic across available access networks, improves load times
by around 30% in most cases, e.g., with asymmetric network
characteristics or a large web page. Adding a penalty to the
highly utilizedWiFi further reduces load time, with speedups
of up to 65% for the 32 objects of 100 KB in the scenario where
both access network have good performance. In other cases,
the Threshold Policy does not speed up page load time, but
chooses the better of the two available access networks. On
the other hand, the Biased Choice Policy does not always
improve page load times, it even sometimes performs worse
than the better of the two interfaces, even when penalizing

Both good

0.2

0.5

1.0

2.0

5.0

10.0

20.0
Only Wired

Only WiFi

Threshold Policy

−"− (with penalty)

Biased Choice P.

−"− (with penalty)

Both bad

0.2

0.5

1.0

2.0

5.0

10.0

20.0
M

e
d
ia

n
 p

a
g
e
 l
o
a
d
 t
im

e
 [
s
]

Asymmetric

0.2

0.5
1.0
2.0

5.0
10.0
20.0

32*10KB 16*10KB, 8*100KB, 4*200KB 32*100KB

Figure 3: Page load times.

a highly utilized WiFi. With crosstraffic, page load times
over WiFi increase, but the Threshold Policy still results
in a speedup compared to the better of the two interfaces.
Consequently, we see that speedups of up to 65% are possible
by combining two access networks in a smart way.

6 CONCLUSION
Our Socket Intents prototype gathers performance metrics
for its access network selection policies. We can accurately
capture maximum download rate, minimum and median
SRTT, and WiFi utilization in our testbed. We take advan-
tage of this knowledge in our Threshold Policy with penalty,
which can speed up page load by up to 65%.

In the future we will gather metrics with more realistic
crosstraffic and over more access technologies, such as cellu-
lar networks. We also want to compare our access network
selection policies with MPTCP and use more realistic work-
load, i.e., actual web pages, or other applications such as
video streaming.

Metrics for access network selection ANRW ’18, July 16, 2018, Montreal, QC, Canada

ACKNOWLEDGMENTS
This work has been supported by Leibniz Prize project funds
of DFG - German Research Foundation: Gottfried Wilhelm
Leibniz-Preis 2011 (FKZ FE 570/4-1).

Thanks to Puneeth Nanjundaswamy for contributing code
to the initial version of the download rate monitoring, to
Sören Becker for contributing the code of the initial version
of the RTT monitoring, and to Marcin Bosk for contribut-
ing the code of the initial version of the WiFi utilization
monitoring.

REFERENCES
[1] Adnan Aijaz, Hamid Aghvami, and Mojdeh Amani. 2013. A survey

on mobile data offloading: technical and business perspectives. IEEE
Transactions on Wireless Communications 20, 2 (2013), 104–112.

[2] Apple Inc. 2016. About Wi-Fi Assist. https://support.apple.com/en-us/
HT205296

[3] Yung-Chih Chen, Yeon-sup Lim, Richard J Gibbens, Erich M Nahum,
Ramin Khalili, and Don Towsley. 2013. A measurement-based study
of multipath tcp performance over wireless networks. In ACM IMC.
ACM, 455–468.

[4] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari Balakrishnan.
2014. Wifi, lte, or both?: Measuring multi-homed wireless internet
performance. In ACM IMC. ACM, 181–194.

[5] IETF TAPS Working Group. 2018. Transport Services (TAPS) Charter.
https://datatracker.ietf.org/group/taps/charter/, accessed in June 2018.

[6] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin
Sadre, Anna Sperotto, and Aiko Pras. 2014. Flow monitoring explained:
From packet capture to data analysis with netflow and ipfix. IEEE
Comm. Surveys and Tutorials 16, 4 (2014), 2037–2064.

[7] Alexey Kuznetsov and Stephan Hemminger. 2018. iproute2 utilities
for controlling TCP/IP networking and traffic in Linux. https://wiki.
linuxfoundation.org/networking/iproute2, accessed in April 2018.

[8] David Miller. 2018. ethtool - utility for controlling network drivers
and hardware. http://www.kernel.org/pub/software/network/ethtool/,
accessed in April 2018.

[9] Kevin Phemius and Mathieu Bouet. 2013. Monitoring latency with
openflow. In Network and Service Management (CNSM), 2013 9th Inter-
national Conference on. IEEE, 122–125.

[10] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley.
2012. How hard can it be? designing and implementing a deployable
multipath TCP. In USENIX NSDI. USENIX Association, 29–29.

[11] Claudio Rossi, Narseo Vallina-Rodriguez, Vijay Erramilli, Yan Grunen-
berger, Laszlo Gyarmati, Nikolaos Laoutaris, Rade Stanojevic, Kon-
stantina Papagiannaki, and Pablo Rodriguez. 2013. 3GOL: Power-
boosting ADSL using 3G OnLoading. In ACM CoNEXT. ACM, 187–198.

[12] Philipp S. Schmidt, Theresa Enghardt, Ramin Khalili, and Anja Feld-
mann. 2013. Socket Intents: Leveraging Application Awareness for
Multi-access Connectivity. In ACM CoNEXT. ACM, New York, NY,
USA, 295–300. https://doi.org/10.1145/2535372.2535405

[13] Joel Sommers and Paul Barford. 2012. Cell vs. WiFi: On the Perfor-
mance of Metro Area Mobile Connections. In ACM IMC. ACM.

[14] Kaixin Sui, Mengyu Zhou, Dapeng Liu, Minghua Ma, Dan Pei, Youjian
Zhao, Zimu Li, and Thomas Moscibroda. 2016. Characterizing and
improving wifi latency in large-scale operational networks. In ACM
MobiSys. ACM, 347–360.

[15] Srikanth Sundaresan, Nick Feamster, and Renata Teixeira. 2016. Home
network or access link? locating last-mile downstream throughput

bottlenecks. In PAM. Springer, 111–123.
[16] Philipp S. Tiesel, Theresa Enghardt, Mirko Palmer, and Anja Feldmann.

2018. Socket Intents: OS Support for Using Multiple Access Networks
and its Benefits for Web Browsing. arXiv:arXiv:1804.08484

[17] Niels LM Van Adrichem, Christian Doerr, and Fernando A Kuipers.
2014. Opennetmon: Networkmonitoring in openflow software-defined
networks. In Network Operations and Management Symposium (NOMS),
2014 IEEE. IEEE, 1–8.

https://support.apple.com/en-us/HT205296
https://support.apple.com/en-us/HT205296
https://datatracker.ietf.org/group/taps/charter/
https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.linuxfoundation.org/networking/iproute2
http://www.kernel.org/pub/software/network/ethtool/
https://doi.org/10.1145/2535372.2535405
http://arxiv.org/abs/arXiv:1804.08484

	Abstract
	1 Introduction
	2 Background
	2.1 Querying Performance metrics
	2.2 Multiple Access Networks
	2.3 Socket Intents Prototype
	2.4 Multi Access Manager

	3 Gathering Performance Metrics
	3.1 Metrics Description
	3.2 Implementation

	4 Access Network Selection
	4.1 Threshold Policy
	4.2 Threshold Policy With Penalty
	4.3 Biased Choice Policy

	5 Evaluation
	5.1 Setup
	5.2 Feasibility study
	5.3 Load time speedups

	6 Conclusion
	Acknowledgments
	References

