TECHNISCHE UNIVERSITAT BERLIN

FAkuLTAT IV
FACHGEBIET INTERNET NETWORK
ARCHITECTURES

Masterarbeit in Informatik

Socket Intents: Extending the Socket
APl to Express Application Needs

Theresa Enghardt
July 26, 2013

Aufgabenstellerin: Prof. Anja Feldmann, Ph. D.
Betreuer /innen: Philipp S. Schmidt, Dipl.-Inf.
Prof. Anja Feldmann, Ph. D.

Abgabedatum: 26.07.2013

Hiermit erklére ich an Eides statt, dass ich die vorliegende Arbeit selbststdndig und
eigenhéndig sowie ausschlieflich unter Verwendung der aufgefiihrten Quellen und Hilfs-
mittel angefertigt habe.

Berlin, den 26.07.2013

Unterschrift

Abstract

In today’s internet, almost all end devices have multiple interfaces built
in, which enable them to switch between different access networks or even
use them simultaneously. Having different characteristics, some of them may
be more suitable for certain kinds of traffic, and therefore better meet the
requirements of certain applications. To account for this, current solutions
rely on static policies or reactive approaches to choosing between interfaces.

This thesis proposes a proactive, application informed approach, Socket In-
tents. Socket Intents augment the socket interface to enable the application
to express its communication preferences. This information can then be used
by proactive policies to choose the appropriate interface, tune the network
parameters, or even combine multiple interfaces. In this work, a prototype
implementation of Socket Intents and a framework supporting them is presen-
ted. Furthermore, a first evaluation of the Intents and its benefits is conducted.
We find that Socket Intents may improve the possibilities to take advantage
of one’s multiple interfaces.

Zusammenfassung

Heutzutage haben nahezu alle internetfihigen Gerédte mehrere Netzwerk-
schnittstellen, die es ihnen erméglichen, zwischen unterschiedlichen Zugangs-
netzen zu wechseln oder sogar mehrere gleichzeitig zu benutzen. Zugangsnetze
haben unterschiedliche Eigenschaften und Applikationen haben unterschied-
liche Anforderungen, weshalb einige Zugangsnetze unter Umstédnden fiir be-
stimmte Applikationen besser geeignet sind als andere. Es gilt, unter mehreren
verfiigharen Netzwerkschnittstellen eine passende auszuwéhlen. Hierfiir setzen
viele aktuelle Losungen auf statische, pauschale Regeln, ohne die Bediirfnisse
der individuellen Applikationen zu beriicksichtigen. Andere Losungen reagie-
ren auf sie, indem sie versuchen, einer bestehenden Verbindung zu entnehmen,
ob Verbesserungen moglich sind, z.B. durch Messung.

Die vorliegende Arbeit verfolgt stattdessen einen proaktiven Ansatz, der
iiber die Anforderungen der Applikation im Vornherein informiert ist und diese
beriicksichtigt: Socket Intents. Socket Intents erweitern die Socket-Schnittstelle,
um es der Applikation zu ermoglichen, Préiferenzen hinsichtlich ihrer Netz-
werkkommunikation auszudriicken. Diese Information kann dann proaktiv fiir
Entscheidungen genutzt werden, um die passende Netzwerkschnittstelle aus-
zuwéhlen, die Netzwerkparameter anzupassen oder sogar mehrere Verbindun-
gen aufzubauen und zu kombinieren. Diese Arbeit présentiert einen Proto-
typ der Socket Intents und ein Framework, das diese unterstiitzt. Aulerdem
wird eine erste Evaluation der Intents und ihres Nutzens durchgefiihrt. Wir
stellen fest, dass Socket Intents es einem System ermoglichen konnen, die
Moéglichkeiten mehrerer Netzwerkschnittstellen besser auszunutzen.

Submitted and Joint Work

Parts of this thesis were written in collaboration and submitted as a conference paper:

Philipp S. Schmidt, Theresa Enghardt, Ramin Khalili and Anja Feldmann

Socket Intents: Leveraging Application Awareness for Multi-Access Connectivitiy
(short paper)

For CoNEXT’13, December 2013, Santa Barbara, CA, USA

Socket Intents were incorporated into the Multi Access Framework originally developed
by Philipp S. Schmidt and further expanded in collaboration. It has been extended to
handle the Intent Socket Options. Furthermore, several policies that handle Intents were
written and evaluated within this thesis.

Vil

Contents

Glossary
1 Introduction
2 Background
2.1 Definition of a Socket
2.2 The Socket API
2.2.1 Connection and Operation
2.2.2 Name Resolution
2.2.3 Socket Options
2.3 Networking Implementation in Unix-Based OSes
2.4 Possible Points of Modificationo

Related Work

3.1 Interface Selection and Management
3.2 Expressing Application Preferences
3.3 Quality of Service

3.5 Mobile Data Offloading

3.4 Using Multiple Interfaces in Parallel
Intents

4.1 Approach toIntents.o
4.2 Intents of our Prototype
4.3 Implementation

Design and Implementation

5.1 Components

5.2 Socket Intent Library o
5.2.1 Interception of Function Calls
5.2.2 Policy Decisions

5.3 Multi Access Manager
5.3.1 [Initialization
5.3.2 Request Handling

5.4 Policies.
5.4.1 Structure and Operation
5.4.2 Types of Decisions
5.4.3 Examples

Adding Applications and Policies

6.1 Modifying an Application to Support Intents
6.1.1 Substituting the Socket Calls
6.1.2 Setting Intents
6.1.3 Building the Application

1X

x1

11
11
11
12
13
13

15
15
16
19

21
21
22
23
23
25
25
26
26
27
27
28

6.2 Writing a Policy
6.2.1 Writing a Configuration File
6.2.2 Setting Up and Shutting Down the Module
6.2.3 Destination Address Selection
6.2.4 Source Address Selectiono
6.2.5 Building the Policy 0.
7 Evaluation
7.1 Setup. e
7.1.1 HTTP Client and Server
7.1.2 Workloads
7.1.3 Network Emulation
7.2 Experiments
7.2.1 Bulk Transfer vs. Query
7.2.2 Offload by Filesize
7.2.3 Filesize Intent vs. Round-Robin
7.3 Conclusion
8 Conclusion and Future Work
A Socket API Functions
B Definitions of Intents
C Implementation Details of the Framework
C.1 Socket Context
C.2 MAM Context
C.3 Sample Policy
References

49

o1

52
52
23
53

59

Glossary

2G 2nd Generation of cellular mobile telecommunications technology.
3G 3rd Generation of cellular mobile telecommunications technology.

4G 4th Generation of cellular mobile telecommunications technology.
APl Application Program Interface.
BSD Berkeley Software Distribution, Unix operating system.

DiffServ Differentiated Services.
DNS Domain Name System.
DSL Digital Subscriber Line.

GPRS General Packet Radio Service, data service of 2G.
HTTP HyperText Transfer Protocol.

IEEE Institute of Electrical and Electronics Engineers, standardization body.
IETF Internet Engineering TaskForce, informal standards organization.
IntServ Integrated Services.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

ISO International Standards Organization.

ISP Internet Service Provider.

LTE Long Term Evolution, implementation of a 4G network.

MAM Multi Access Manager.
MPTCP MultiPath Transmission Control Protocol.
MUACC MUltiple ACCess.

OS Operating System.

POSIX Portable Operating Systems Interface.

x1

QoE Quality of Experience.

QoS Quality of Service.

RFC Request For Comments, publication of the IETF.
RSSI Received Signal Strength Indication.

RTT Round Trip Time.

SCTP Stream Control Transmission Protocol.
TCP Transmission Control Protocol.

UDP User Datagram Protocol.

WiFi Wireless Fidelity, synonym for WLAN.
WLAN Wireless Local Area Network.

xii

1. Introduction

Ten years ago, most clients had just a single way to connect to the internet (typically
Ethernet for laptops and workstations, and GPRS for smartphones). Today, almost all
devices have multiple interfaces built in. For example, smartphones have built-in 3G/4G
as well as WiFi interfaces, see Figure 1, while most laptops have Ethernet, WiFi, and can
use 3G in addition. Moreover, they can seamlessly switch between using one or the other
interface or even use multiple of them at the same time.

Figure 1: Multi-Access Host: The majority of today’s hosts can connect to the internet
through multiple interfaces at the same time.

The performance that each individual network technology provides differs, e.g., in terms
of bandwidth, delay, availability, congestion, cost per byte, and energy cost. For example,
while WiFi if uncongested provides higher bandwidth than 3G and therefore may be
preferable, the 3G network may be preferable if the WiFi network is congested. Moreover,
3G and 4G work even if the user is no longer in reach of their WiFi access points. Of
course 4G currently offers higher peak bandwidth than even most DSL lines but it is a
shared medium and thus susceptible to congestion. Thus, there is a lot of optimization
potential on the devices with respect to choosing or combining the appropriate interfaces.

For this, current devices often rely on static configuration policies, trying to find a
general solution for all connections regardless of their individual characteristics. If they
take application needs into account, their approach is reactive rather than proactive.
This means that they do not attempt to optimize their decisions before the application
establishes the connection, but try to assess and possibly improve their service while
communication is in progress.

In this thesis, we propose a proactive, application informed approach: Socket Intents.
Instead of trying to infer the characteristics of an application’s traffic from an ongoing
connection, the application is given the possibility to express its needs up front. In this
way, they can immediately be incorporated into decisions, even before a connection is

established. For example, if the user of the smart phone of Figure 1 wants to access a
website that consists of many small objects, the connection will benefit from low delay.
However, if they are downloading a big file, high bandwidth is more important. If this
information is communicated by the application before establishing the connection, it is
possible to choose a suitable source interface in either case.

One of the key problems though is that such decisions are often made within the
operating system running on the host, where by default, only little information about
the application’s needs is available. For instance, it typically has no idea of the size of
the downloaded data nor its relevance to the user. However, this information is often
available to the application. Therefore, Socket Intents augment the Socket API to enable
the application to express its communication preferences. Here, preferences can refer to
high bandwidth, low delay, connection resilience, etc. This information can then be used
by our dynamic proactive policies to choose the appropriate interface, tune the network
parameters, or even combine multiple interfaces. We implement a framework for making
such policy decisions and applying them, aiming to provide better service according to
application needs. Different policies for different settings and use cases were implemented
and evaluated.

This thesis is structured as follows: First, some background information on the socket
interface and its implementation is provided, as it is the basis for our enhanced Socket
API. Then there is a survey of related work. Afterwards we describe our design and
implementation of the Socket Intents framework in detail and explain the practical aspects
of how to use it. We then provide a first evaluation of the potential benefits. Finally, we
conclude the thesis with an outlook and possible future work.

2. Background

The following section provides an introduction of how network communication on end
hosts works. It first presents sockets as the central concept at the intersection of applica-
tions and the networking implementation within the Operating System (OS). Then, the
process of establishing a connection is explained, the relevant functions are discussed in
detail and an overview of the structure of an OS’s networking implementation is given.
Concluding this section, the most promising points where modification is possible are
highlighted.

2.1. Definition of a Socket

A socket is an abstraction of communication between processes, i.e. applications running
on computing devices such as PCs or smartphones. They allow for communication with
other applications, either running on the same host or on another one. Thus, they facilitate
bidirectional interprocess communication across multiple hosts and possibly using multiple
interfaces, as shown in Figure 2.

To be able to deliver data to the correct socket, sockets must be referenced by socket
addresses. The socket address serves as an identifier of the communication endpoint,
and may consist of several components, e.g. for the machine and for the application on
the machine. A common analogy is the way in which the endpoint of a telephone line
is identified by a telephone number and extension. There are different kinds of socket
addresses, called address families, which may differ in content and form of the identifiers
they store. Which address family is used for a certain socket depends on its domain of
communication. For instance, there are local sockets for communication within a single
host and network sockets which use a network protocol to communicate with remote hosts.
The former are called Unix Domain Sockets and use file descriptors as addresses, i.e. paths
to a file on the host. The latter vary depending on the available network protocols, but
most commonly they use IP, the Internet Protocol, and are thus called Internet sockets.

In the case of IPv4, the address consists of a numeric IP address to identify the host
that the application is running on, and a port number. This is a number between 1 and
65535 which helps distinguish between applications within a single host. Port numbers
up to 1024 are "well-known” ports reserved for certain applications, e.g. port 80 is most
often used by web servers.

Sockets can have a local socket address on the host they are running on, and they can
connect to a remote socket address on another host. Furthermore, they need to specify a
transport protocol to use. The most common examples of transport protocols are TCP
and UDP of the Internet Protocol suite. Within a host, the combination of local socket
address and transport protocol that a socket uses must be unique. That means that only
one process may use a given port number with a given IP address and a given transport
protocol at a time. While this process is running, others must either choose another port,
another transport protocol or another local IP address. Two sockets are connected when
one socket’s local address is the other socket’s remote address and vice versa, and they
use the same transport protocol. The combination of local and remote socket address and
transport protocol is called association, which is an important concept for setting up a
connection.

Figure 2: Within host: Applications/network interfaces.

2.2. The Socket API

The Socket API consists of a number of functions and data structures provided by OSes
in standard libraries. It provides a programming interface that allows applications to use
sockets. Applications can expect them to be present on most systems by default.

This API, also called the Berkeley Socket API, has been standardized in a joint Open
Group/IEEE/ISO standard for Portable Operating Systems Interface (POSIX) [1]. Many
modern OSes are mostly POSIX-compliant and implement the Socket API in the form
presented here. This is especially true for any Unix-based OS such as Linux or Mac OS,
since the POSIX Socket API evolved from BSD, a Unix derivate. Also, the Windows
Socket API is modeled after the presented Berkeley Socket API.

After standardization, many extensions have been proposed, e.g. by the IETF in RFCs
to support IPv6 [8,19]. This is one of the important extensions that has also been
implemented in most OSes.

In the following sections, the functions of the Socket API are introduced in detail.

2.2.1. Connection and Operation

Let’s start with the example of an application that wants to communicate over a network
using the Socket API. Assuming that it wants to connect to a remote host, exchange some
data with it and then terminate the connection, it has to perform a number of steps. The
necessary actions and the resulting status of its local socket are shown in Figure 3.

At first, the application has to create a socket and choose a communication domain,
a type, and a transport protocol. For creating the socket, the socket function is called.
The socket type that is chosen depends on the characteristics of data delivery that the
application needs, most commonly used are stream sockets and datagram sockets. The
former provide the reliable delivery of a stream of bytes, which is guaranteed to arrive at
the other side in the same order. The latter delivers packets of data on a best-effort basis,
which means that their arrival is not guaranteed and can generally not be confirmed. The
combination of address family and socket type designates a number of transport protocols
to choose from. Applications can either set one explicitly or instruct the OS to use the
default, e.g. TCP for stream sockets and UDP for datagram sockets.

Set domain, socket type
and transport protocol

v

Socket has been created.

v

Set local socket address

v

Local half of the association established.

v

Set remote socket address

v

Association fully established.

v

Socket is connected. Data
is sent and received.

v

Close the connection

v

Socket is disconnected.

Figure 3: Steps to establish, use and terminate a connection on the client side

Note that datagram sockets are not connection oriented, which means that an appli-
cation is not required to establish an association on them and can simply start sending
or receiving. In this case, it needs to specify the destination address within the send
operation.

For connection oriented sockets, an association has to be established first. There are
two possibilities: Applications can either proactively connect to a remote address, or they
can passively wait for other applications to connect to it. The first case corresponds to
the "client”, the second case to the "server” in the client-server model for distributed
applications.

Applications that proactively connect to a remote application can use the bind function
for their local half of the socket’s association and must use connect for the remote part.
Both of these functions take a socket address and its length as an argument.

If the application omits the step of setting a local socket address, the OS chooses one
of its available local socket addresses on its own.

Applications that passively wait for incoming connections from other applications, also
called peers, must use the same bind function mentioned above to set its local socket
address. This is important, since peers need to know this socket address to be able to

connect to it. Waiting for them, the application must call 1isten to set up a queue for
incoming connections on its half-associated socket. To handle connection requests, the
accept function must then be called. Once a peer connects to the application’s local
socket address, it creates a new socket with a complete association, including the remote
socket address of the peer. The original socket remains unconnected with only half an
association, waiting for more peers to connect to it.

Depending on the used transport protocol, a handshake between the two sockets may
be started once the association is complete, which means that messages are exchanged to
set up the connection. A well-known example for this is the TCP handshake.

If the association has been established successfully, data can be exchanged between the
local and the remote socket. This can be done using the functions send and recv.

If the socket is not connection-oriented, e.g. in the case of a datagram socket communi-
cating over UDP, association is not mandatory. Alternatively, the destination address has
to be specified as part of the sendto function, which takes a socket address as parameter.
This allows an application to send data to multiple destinations on the same socket. Re-
ceiving data on an unconnected socket can be done using the recvfrom function, writing
not only data to a buffer, but also the source address to a socket address buffer.

Once the application decides to terminate the connection, the shutdown function can
be called to disable further send operations, receive operations or both. It is also possible
to call close on the socket file descriptor to terminate the connection.

An overview of all functions, their parameters and return types is shown in Appendix A.

2.2.2. Name Resolution

In many of the presented calls, socket addresses play a prominent role. They must be
provided by the application, often as the result of user input. In most cases they con-
tain numeric identifiers, such as IP addresses, which are inconvenient to remember. As
identifiers, host names are much easier to use. For example, in web browsing, we most
commonly do not enter the IP address of a remote web server for accessing a website,
but use a URL that contains its host name. Before the browser can connect to the web
server, it has to find out its IP address. This is the purpose of name resolution, a process
where host names are resolved to one or multiple network addresses, also called lookup.
Reverse lookups that resolve IP addresses into host names are also possible. For both of
these processes, a name server is queried, most commonly DNS server.

Applications can perform name resolution through functions of the resolver library.
This library is considered part of the Socket API, but not strictly integrated, as its calls
can be used without creating a socket.

The most versatile and commonly used function of the resolver library is getaddrinfo.
Its arguments and return type are also shown in Appendix A. It can take a host name or
IP address to resolve, returning a list of socket addresses. It can also resolve service names
into port numbers on the local host, returning available local addresses with the appropri-
ate port number matching the service. Thus the resolver can provide useful information
for both the local and the remote half of the association. By setting the ”hints” parame-
ter for the lookup, applications can specify whether they need local or remote addresses,
whether they require a certain address family and much more information. The response
is a list of socket addresses which match the query.

Note that a call to this function is not performed on a specific socket. This implies that
a socket does not need to exist yet when getaddrinfo is called. Within the program, it
can simply be called at any point before its information is needed.

For instance, it can be called directly before connect to find a suitable destination
address for a socket where the local half of the association already exists. In this case,
the application has already given the socket an address family at creation time, so it now
needs to query for remote addresses of the same family. Another possibility would be to
call the resolve function before any socket has been set up. In this way, one could get a
list of addresses of multiple families, e.g. if the host has both IPv4 and IPv6 addresses
available, and try to connect to all of them. For each returned address, one would first
set up a socket, then try connecting it and destroy the socket if this has failed. In this
way, an application could be flexible to use either IPv4 or IPv6, depending on what is
available. This also means that the order of socket calls should not be regarded as fixed,
but there is some possibility to vary it.

2.2.3. Socket Options

As shown in Section 2.2.1, sockets are created by providing some basic parameters such
as their communication domain and type. It is possible for applications to further tweak
their properties and behavior by modifying their socket options. Many extensions of the
Socket API have been implemented using them.

Any option exists on a certain level, which specifies whether the option applies to the
socket’s general properties or to the behavior of a specific protocol used by it. In the first
case, the level would be SOL_SOCKET, e.g. where one can instruct the socket to let others
reuse its address or to allow broadcast. In the second case, the level would correspond
to the protocol, e.g. IPPROTO_TCP, where one can specify details such as the congestion
control algorithm to use.

To set an option, getsockopt is used with the level, option name and value of the
desired option. The option value can have any type and length, as defined by the part
of the OS where it is later processed. It is possible to query for a socket option using
setsockopt providing similar parameters.

Since the Socket API is incorporated in the file API in most OSes, it is also possible to
change some parameters of a socket using calls that operate on files, such as the ioctl
or the fnctl interface.

2.3. Networking Implementation in Unix-Based OSes

Generally, the task of an OS is to manage hardware resources on computing devices
and provide services to applications. Consequently, managing networking devices and
granting applications access to them is also part of this task. Furthermore, OSes manage
connections and hand received data to the correct application. As stated in Section 2.2,
most of them implement the Socket API.

Most OSes distinguish between at least two protection domains of their memory, kernel
space and user space. In kernel space, the operating system loads and executes tasks of
the system’s core functionality, e.g. the access to hardware resources. User space is the

Application

User space Socket Library (within libc)

Kernel space Network Stack

Interface Drivers

Figure 4: Scheme of the networking implementation within modern OSes

part where user mode applications are run. If such an application accesses a functions
from kernel space, this is called a system call.

Figure 4 shows the components of the networking implementation of a Unix-based
operating system. Some of them lie in user space, some in kernel space. Applications
run in user space and make calls to the Socket API, as explained in Section 2.2. The
functions that they call are implemented within the Socket library which still resides in
user space and is part of libc, a standard library. The Socket API thus forms the interface
between the application and the socket library, and it remains the same across many
OSes, enabling them to run independently of the actually used OS. The implementation
within the socket library, however, may differ across OSes or different versions of them.

From within the socket library, system calls are performed, i.e. functions in kernel space
are called. These system calls differ depending on OS and CPU architecture.

Within the network stack implemented in the kernel, packets are assembled to be sent
to the network or disassembled to be received by the application. This is done by creating
protocol headers and adding them to messages, or reading protocol headers and process-
ing them. Messages are handed to or received from device drivers or networking hardware
such as network cards, wireless cards and UMTS sticks. All of the structure and imple-
mentation within kernel space is heavily dependent on the actual OS. The components in
user space may be similar across OSes, making changes there much easier to port.

2.4. Possible Points of Modification

In the previous sections, we have discussed networking from an application’s perspective
in great detail. With this in mind, we are interested in interface selection and enhancing
this decision with additional information provided by the application.

As discussed in Section 2.2.3, socket options provide a generic interface that allows
applications to pass arbitrary information through it. This part of the API is an obvious
choice for extending by defining additional options on an existing level or by adding a
new level new that socket options can be set on.

Regarding interface selection, we note that local addresses are usually configured on a
specific interface. This means that the choice of a specific local address implies the use of
its associated interface.

As already mentioned in Section 2.2.1, applications can set up a connection without
explicitly choosing a local address. In this case, the OS chooses a local socket address for it.

This choice is made within the kernel using a simple policy that depends on the available
local interfaces and on the kernel’s routing table. For source interface selection, this
policy’s decision must be overridden in some way. This can be done either by modifying
the kernel, discussed in Section 2.3, or it can be done by calling bind for the application
before the default policy can come into effect.

Similar to the local host, it is also possible that a remote destination host has multiple
addresses. As explained in Section 2.2.2, most applications rely on name resolution to
choose a destination address when setting up a connection. The getaddrinfo function
can return a list of possible addresses, which are typically tried in the order that they are
given. The result is that in the end, the one that is finally used is the first one from the
list where connecting succeeded. The order of the addresses in the returned list are thus
likely to play a role in destination address selection. By default, this order is determined
somewhere within the kernel or the resolver library. However, it would be possible to
reorder the list before handing it to the application to bias destination address selection.

In summary, the Socket API enables operating systems to provide a common and
standardized interface to applications, which they can use for network communication.
Within and beneath this interface, modifications can be made to influence the behavior
of the system.

3. Related Work

This section gives an overview of related work regarding the potential benefits and chal-
lenges of using multiple interfaces. It also presents different approaches to giving the
application more control over connections by expressing needs or preferences. For both
of these topics, several use cases and existing solutions are presented. Some extensions
of the Socket API, especially concepts for leveraging the presence of multiple interfaces
or knowledge from the application for improving service towards it, are introduced and
delimited from the Intents approach.

3.1. Interface Selection and Management

The presence of multiple interfaces on a host enabling it to connect to different access
networks yields a lot of potential, but also poses a number of implementation questions.
A problem statement for multiple interfaces [4] illustrates the potential challenges to
implementers of an OS. In addition to the selection of addresses and interfaces, the issue
of distinct provisioning domains is outlined there. With multiple access networks being
available, the device could receive conflicting configuration information. The resolution of
such conflicts is not standardized, so different OSes are likely to find different solutions.
Other challenges include possible DNS resolution complications, e.g. when a name is only
resolvable on a certain interface of a host.

In RFC 6419 [24], current approaches implemented on mobile and desktop OSes are
presented, which include centralized connection management, per-application connection
settings and altering of the network stack. Our framework addresses some of these prob-
lems as well, especially address and interface selection, while others such as routing issues
are out of scope. However, we aim for a solution that is compatible with multiple operating
systems.

3.2. Expressing Application Preferences

On most modern operating systems, applications do network communication through
the Socket API, as presented in Section 2. There is literature available covering its
implementation [20] which shows, e.g., the relationship between the Socket API and the
protocol suites. Furthermore, the IPv6 extensions [8,19] for the socket interface provide
an insight of how an extension of this heavily used API could look like.

Some Socket API extensions have been proposed that enable applications to express
preferences in terms of socket address selection in the context of IPv6 multihoming [16,23].
Here, an application can influence the choice of source address and override possible de-
fault policies for source address selection by setting flags within socket options. Design
alternatives, e.g. regarding the scope of the preferences, and implementation consid-
erations are discussed in detail while the necessity of incorporating name resolution is
highlighted. However, these address selection policies mostly regard the scope of the ad-
dress, whether it is temporary or permanent, and mobility considerations. The Intents
approach aims to allow for more criteria, e.g. to take different characteristics of the links
that belong to different interfaces into account. It is not limited to address selection,

11

but also wants to tune network parameters or bundle interfaces. Furthermore, the rules
proposed there are rather static with only some possibilities to alter them, while we prefer
a more flexible set of rules.

Somewhat inspiring the term Intents, an application-informed approach to source in-
terface selection is taken by Intentional Networking [9]: They enable applications to label
their connections with expected characteristics, such as whether it contributes towards an
interactive user application as ”foreground” traffic or whether it is a transfer operating
in the "background”. These labels are not attached to the socket as a whole, but to
a sequence of ordered messages sent on the socket, between which the application can
distinguish using message annotations in its send calls. For each such message sequence
with a certain combination of labels, the most appropriate interface is determined accord-
ing to a static policy, and the data is sent over this one. Multiple such ordered message
sequences can exist within a single socket, and they can have different labels. Further-
more, Intentional Networking allows message sequences to be delay tolerant and to have
different ordering constraints. For respecting these constraints, meta-information is sent
as message overhead along with the data and thus support from the peer is required. In
contrast, our approach operates on a whole socket and focuses on interface selection and
parameter tuning on the host that it is implemented on. Mandatory behavior specification
such as ordering constraints are out of scope for Intents, and they do not require support
from the communication partner, making them easier to adapt.

Another approach to communicating an application’s needs through the Socket API
defines sets of desired characteristics and assigns a protocol number to each of them [25].
Setting one of these protocol numbers on a socket, an application is able to place its traffic
into a certain category, enabling the networking implementation to base interface selection
or parameter tuning on it. However, the mapping between every possible combination of
traffic characteristics and the protocol numbers has to be made available to application
developers and kept up to date at all times, introducing usability issues and potential
incompatibilities.

3.3. Quality of Service

The principle of expressing and satisfying the requirements of an application has also been
made in the context of Quality of Service (QoS). The two predominant concepts here are
Integrated Services (IntServ) and Differentiated Services (DiffServ). Both of them aim
to provide certain service guarantees to applications, such as assuring a delay below n
milliseconds for each packet of a delay-critical connection. IntServ [26] make use of a
resource reservation protocol along the path of a connection, while DiffServ [15] provide a
classification scheme for IP packets which are then handled accordingly on intermediate
devices, e.g. by using different scheduling algorithms.

In the context of QoS, some approaches exist that communicate application require-
ments through the Socket API in a quite detailed way. They introduce new data structures
that contain constraints or requested parameters of the connection and pass them to the
networking implementation through extended socket calls. QSockets [2] provide a ” QoS-
enhanced Socket API”, enabling applications to directly set parameters for queueing and
scheduling on socket setup. Furthermore, they enable the annotation of messages with

12

flags, e.g. requesting a certain delivery time. Another approach [18] stems from the
Future Internet architecture context. It defines a comprehensive list of possible require-
ments as conjunctions of effects, operators and attributes, e.g. "delay”, "less than” and
”100ms”. These requirements are placed within a list and passed through the Socket API
at connection time.

While Intents also express applications’ expected traffic characteristics or categories
which can then be treated differently to provide adequate service, they are not a concept
to guarantee certain service parameters. Rather they aim to improve the service to ap-
plications on a best-effort basis, optimizing the use of the available resources according
to the application’s needs. It would be possible to take advantage of QoS technologies
from within the Intents framework if they are available. However, the framework does
not rely on it, as different access networks on different interfaces already offer different
QoS characteristics on a best-effort basis by default.

3.4. Using Multiple Interfaces in Parallel

Instead of having to choose between interfaces, there are protocols are able to use multi-
ple ones in parallel. A fairly recent example is MultiPath Transmission Control Protocol
(MPTCP) [7,17], a modified version of the transport protocol TCP. It attempts to use
multiple available interfaces in parallel by establishing a TCP connection to the same peer
through each of them, pooling the links’ capacities while being transparent to the appli-
cation. To be compatible with existing applications, the changes to the Socket API are
kept to a minimum, but nevertheless applications can explicitly enable MPTCP through
the Socket API if the system supports it. As such, MPTCP is orthogonal work to this
thesis: For instance, it is one example of how multiple interfaces could be bundled to
improve service for connections with a high bit rate to meet an application’s needs.

Another transport protocol designed for this is SCTP [21,22], which is message-oriented
like UDP, but ensures reliable delivery of messages like TCP. An association is established
between two SCTP endpoints, each with its own socket address. However, the presence
of multiple socket addresses means that there are multiple potential SCTP endpoints. In
this case, multiple associations can be established on a single socket, which often implies
the use of multiple interfaces in parallel. This is called the one-to-many style interface,
as it allows multiple associations on a single socket. Other than MPTCP, this mode
requires extensive support from an application, which may need to specify multiple local
addresses it wants to use and manage the individual streams by itself. Like MPTCP,
SCTP is orthogonal work to this thesis.

3.5. Mobile Data Offloading

Multiple access connectivity allows us to offload a portion of the traffic on one access
network to another access network through which the communication peer is reachable
as well. A popular example of this is cellular mobile providers moving traffic from their
heavily used 3G networks to parallel WiFi networks to relieve them from some of their
load. This topic has gotten a lot of attention recently in the research community as well
as in the industry [6].

13

In the research community, offloading has two major aspects: Interface selection and
delay tolerant networking. The former focuses on using the ”better” interface when it
is available and in cases where it is appropriate for the application. The latter goes
further by modifying applications to defer their communications to a point in time where
the "better” interface becomes available. It may also involve changes to the way that
information is distributed and addressed.

Lee et al. [12] demonstrate via a quantitative study the performance benefit of offloading
3G mobile data to WiFi networks. They find that while relieving the 3G network of about
65% of the mobile data traffic, 55% of battery power is saved on the client devices. Even
more gains are possible by leveraging delay tolerance, deferring data transfers for a certain
time in situations where no WiFi network is available. Reflecting the mobility patterns
of average users, they report further gains of more than 20% when the timeout for such
transfers is set to 1 hour or longer.

Balasubramanian et al. [3] design a system called Wiffler to augment mobile 3G capacity.
They leverage delay tolerance to overcome availability and performance problems of WiF1i,
aiming to reduce overall 3G usage. Furthermore, they respect the sensitivity of some
applications to delay or loss by performing fast switching between the two networks.
From their experiments, they report a reduction of 45% of 3G traffic when setting the
delay tolerance to 60 seconds.

Delay tolerant networking does not seem to be compatible with Intents. The reason is
that it requires major modifications to the application and possibly also to the network,
while Intents are a purely host-based concept. However, we think that interface selection,
as an aspect of offloading, is a conceivable use case for Intents. On the whole, they may
be quite useful for basing decisions on the need of the application.

14

4. |ntents

There is a large variety of applications, each of which has certain requirements regarding
the preferred properties of its network connections. These requirements can be quite
diverse, but are typically known to the application itself.

The operating system wants to provide an optimal service to the application and to the
user. However, what ”good” performance means in practice largely depends on the needs
of the application. If a system does not know about these wishes, it is more difficult to
fulfill them. Thus when it makes choices such as selecting a source interface, it would be
advantageous to take the application’s preferences into account.

The purpose of Intents is to bring the application and the system together in this
regard. Intents are pieces of information about the preferences or expectations regarding
an application’s communication on a per-connection basis. They can be expressed to the
system in order to enable it to better meet the needs of the application.

Intents should be understood as an assistance for the OS, not as constraints to be
satisfied. They are accounted for on a best-effort basis and do not imply any hard re-
quirements or QoS guarantees. For some Intents it might not even be possible to quantify
their "success”. Even if they express a requirement that cannot be fulfilled by the sys-
tem, this should not impair connection establishing and the application should continue
to function in any case.

As a purely host-based concept, Intents do not require any support by the network
or by the communication peer. In particular, this means that peers are not required to
implement Intents as well.

In this section, Intents are introduced as a concept for such pieces of information. After
presenting their principle, some concrete examples of what could be communicated are
shown. Finally, the question of how to implement Intents and integrate them into the
Socket API is discussed.

4.1. Approach to Intents

Aiming to explore which information is usable as Intents, a few design choices have to be
made.

Concerning the scale of the information, Intents are defined on a per-socket basis® rather
than per application, and an application can set different Intents of each of its sockets.
The reason is that multiple sockets can have very different purposes and thus different
requirements. For instance, a browser can open a socket to retrieve constrasting kinds of
data, such as fetch small objects on web sites or retrieve a long video stream.

Intents can describe characteristics of the traffic of a connection, but are not in itself
a complete definition of these characteristics. Pieces of information that are already
given, e.g. those required for choosing a transport protocol, should not be duplicated.
Consequently, reliable delivery, the ordering of packets, and the preservation of packet

LA per-socket basis often, but not necessarily, corresponds to a per-connection and per-flow
basis. A flow is here understood as all packets with the same source address, source port,
destination address and destination port. However, flows can be bundled using protocols
such as MPTCP, so there can be multiple flows per socket.

15

boundaries are unsuitable as Intents. Moreover, these are mandatory requirements that
lead to the choice of a specific protocol and are thus incompatible with the optional and
best-effort nature of Intents.

Instead of defining how messages of the flow are handled, the goal of Intents is to help
aiding decisions such as interface selection or parameter tuning on a socket. As these
decisions are related to association, they are made before a connection is established, so
it is useful to set Intents before this. However, applications are allowed to set Intents on
a socket at any point in time. Providing them is voluntary and it is highly unlikely that
information for every possible Intent is or can be set on a given socket.

4.2. Intents of our Prototype

Before we go into the details of the Intents implemented in our prototype, let’s start with
some example use cases:

(i) If the antivirus software needs an update this usually implies downloading a large
file. This is a bulk transfer of an object with a certain file size, which the application may
know or be able to query before retrieving the data. Timing is typically noncritical, since
the download most likely runs in the background instead of being part of a direct inter-
action between machine and user. As long as it completes eventually, its finishing time is
improbable to have a significant impact on the user experience. Moreover, if the the TCP
connection was interrupted during the transfer but then continued after a short time, the
application would not suffer. For this connection the application can set ”bulk transfer” as
a general category. Additional information provided can be file size, timeliness, and re-
silience against connection loss. As a consequence, the system might take these cues into
account by choosing an interface with high bitrate but high delay over an interface with
opposite characteristics. It could also refrain from taking additional precautions against
connection interruption, preventing it from causing unnecessary overhead.

(ii) If you want to watch a video online, it usually means establishing a streaming
session over which video and audio data is transmitted continuously. The duration of
this transfer may be known to the client in advance. Furthermore, the application may
know the bitrate or be able to infer it, e.g. from the choice of codec and resolution.
Connection interruption can have an effect that is visible to the user, greatly affecting
user experience in a negative way. Especially in the case of live streaming, connection loss
is undesirable or even disastrous. Knowing this, an application can put this connection
into the general category ”stream” with additional information about duration, bitrate
and resilience requirements. Making an effort to provide the best possible service to
the application, the system could choose an interface that supports the required bitrate,
bundling multiple of them if necessary. It could also take precautions to improve resilience
against loss by using multiple interfaces in parallel.

These examples show different kinds of information on different abstraction levels that
are suitable as Intents:

e (lategories: Broad classes of traffic
e Detailed flow characteristics such as file size, duration or bitrate

e [zpectations or tolerance e.g. regarding delay or connection interruption

16

Intent Type Possible values

Category Enum Query, bulk transfer, keepalives, control traffic,
stream
File size Integer Number of bytes transferred by the application
Duration Integer Time between first and last packet in seconds
Bitrate Integer Size divided by duration in bytes per second
Burstiness Enum Random bursts, regular bursts, no bursts or bulk
(congestion window limited)
Timeliness Enum Stream (low delay, low jitter),
interactive (low delay),
transfer (completes eventually)
or background traffic (only loose time constraint)
Resilience Enum Sensitive to connection loss (application fails),
undesirable (loss is fairly inconvenient)
or resilient (loss is tolerable)

Table 1: List of proposed Intents and characteristics

An overview of the Intents implemented in our framework is shown in Table 1. Some
of these pieces of information can be expressed as integers, i.e. as numeric values, some
as enumerations, i.e. as one of multiple possible values to choose from. They are based
on information that may be readily available to some applications and are both easy to
set and useful as cues for the system. Moreover, it is straightforward to add more Intents
in the future.

Detailed considerations While technically, burstiness is also a detailed flow characteristic,
it is not as straightforward to express as a numeric value because there is no consensus
definition? [11]. This is why an intuitive enumeration of possible values was chosen for
this detail.

Concrete numbers for these values are typically only known for certain types of con-
nections. For example, knowing the duration of a flow in advance makes sense for a video
stream, but not for a query. Knowing the file size in advance is possible when a discrete
object is downloaded, but not for a constant flow of control traffic. If there is no concrete
value, applications could choose to use an estimated number instead.

2For instance, burstiness as a property of the flow can be defined as variance burstiness, RT'T burstiness,
or train burstiness. For computing the variance burstiness at a time-scale T, the flow is divided into
bins of duration T, and s is the number of bytes sent within a bin. The variance burstiness is the
standard deviation of all s, but its value is largely dependent on the choice of T. On the other hand,
RTT burstiness defines the burst size as the number of bytes sent in each RTT of the flow, and is
computed as the product of mean burst size and average RTT. Train burstiness divides a flow into
trains of packets and measures burst size, duration, rate and inter-burst time.

17

More abstractly, applications often can intuitively estimate whether a flow characteristic
is "high” /”large” or "low” /”small”. Lan and Heidemann [11] divide flows in the following

ways:

e by size into elephants and mice

e by duration into tortoises or dragonflies

e by rate into cheetahs and snails

e by burstiness into porcupines and stingrays

Using such labels as Intents by themselves is not advised, as their significance is limited
if the threshold between ”high” and ”low” values is not defined. However, they help to
intuitively classify flows into categories. For instance, the combination of "high” file size
and "high” rate fits well with our perception of a "bulk transfer”. Since some of these
labels have a strong correlation [11], there are some combinations that are more likely
and some that are rather unlikely. Thus not all combinations make up a possible value
for the category Intent. Contrarily, all possible categories imply assumptions about some
of the characteristics of their flow. Furthermore, for each category there are some other
Intents that are likely to be set along with it. An overview of this is shown in Table 2.
Note that these are only suggestions and applications are free to set or not set any Intent
that they deem appropriate.

Category Assumed Flow Likely accompanying Intents
Properties
Query Small, short Desired timeliness,

Bulk transfer

Control traffic

Keepalives

Stream

Large, short,
fast, bursty
Large, long,
slow, bursty

Small, long,
slow, not bursty
Large, long,
fast, not bursty

resilience to connection loss

File size, desired timeliness,
resilience to connection loss
Duration, burstiness, desired
timeliness, resilience to connec-
tion loss

Duration, desired timeliness,
resilience to connection loss
Duration, bitrate, desired
timeliness, resilience to connec-
tion loss

Table 2: Traffic categories and samples of how Intents can be combined

18

4.3. Implementation

Based on the principles and the general philosophy of Intents presented previously, there
is the question of how to incorporate them into the Socket API.

For a Socket API extension, one has the general choice between adding parameters
to existing functions and making new function calls, e.g. by setting socket options. As
mentioned in Section 2.2.1, there is already some information passed within the socket
setup call, such as type and address family. However, adding more parameters there
would be antithetical to the principle that all Intents are optional, since in this case an
application would be either forced to specify the Intent or provide a default value. This
would complicate the interface from the point of view of the programmer. Consequently
Intents were implemented as new socket options, which are an obvious point of extension
to the Socket API as explained in Section 2.2.3. In this way, the completely voluntary
nature of Intents is taken into account and existing socket calls are not modified for
them, keeping the overhead to a minimum. Socket options can be freely set at any
point within the application, which conforms to the principles of Intents. Furthermore,
arbitrary option values can be passed through socket options, accounting for the different
types that Intents can have. Furthermore, if an application attempts to set Intents on
a host that does not support them, the function will return a "not supported”error. In
this way, the application can react gracefully instead of crashing, which is in accordance
with the philosophy that Intents should be handled as an optional help for the OS and
not provide any constraints.

By specifying the level on which the option applies, one can influence the part of the
networking implementation that processes the option, minimizing the risk of influencing
other socket options. Intents are not related to any specific protocol, so they do not
belong on one of the protocol levels mentioned in Section 2.2.3. The socket level refers
to more generic properties of a socket, but contains mostly requirements and practical
instructions for handling connections. The nature of Intents differs from this, so a new
socket option level is introduced: SOL_INTENTS. This also prevents having to pay attention
to not reuse an existing option name. Option value types are defined according to Table 1
in Section 4.2. An overview of the Intents as they can be used by applications is shown
in Appendix B.

How Intents are handled within a host, e.g. how they aid policy decisions, is explained
in Section 5.2 as it closely relates to the other modifications of the Socket API.

19

5. Design and Implementation

As shown in Section 2, there are several choices which applications can either make them-
selves or let the network implementation decide, such as source address selection. If
applications make these decisions themselves, they typically do not have much knowledge
about the system’s state and thus make an effort to query it or pick a ”good” or ”bad” op-
tion more or less by chance. Moreover, if an application implemented a policy-making
entity, others would have to duplicate it to make use of it. On the other hand, in unmod-
ified OSes, letting the decision be made within the networking implementation leads to a
simple, static policy being applied. Without Intents, presented in Section 4, there is not
much knowledge about the application’s needs and expectations there.

It appears that such decisions should be made by an instance that is within the OS, so
that multiple applications can make use of it. However, it should receive some hints from
them in order to adjust its decisions to the individual requirements of the applications.
Furthermore, it can make use of comprehensive knowledge about all applications that use
it. Since in different scenarios, a varying number of links with different properties may
be available, it is desirable to make policies interchangeable.

This section shows the design and implementation of a framework to make and apply
such policies, facilitating source and destination address selection as well as further tuning
of network parameters while taking Intents from the application into account.

5.1. Components

Our framework consists of three components: the Socket Intent Library, the policy man-
ager called Multi Access Manager (MAM) and the policies, see Figure 5. Each of these
components is implemented in C and compatible with Linux as well as MacOS.

i Application Multi Access
Manager -.
y Manager -,

Socket Intent Library : |
g[OriginaI Socket Library

J

Figure 5: Components of the framework.

The Socket Intent Library provides an augmented Socket API which is largely based
on the original Socket API described in Section 2. Its task is to override the simple, static
policy decisions that are applied if an application does not make the decisions itself. This
is done entirely in user space in the way described in Section 2.4, and the kernel is kept
unmodified. All of our framework resides in user space, as this is simpler and easier to
port, e.g. to machines with different OSes. The library is implemented on top of the
original Socket Library, handling calls from the application first and passing information
and instructions down the networking implementation through the original Socket API.
For requesting policy decisions, the Socket Intent Library communicates with the MAM.

21

Socket Intent Library | Multi Access Manager | Policy

startup »init()

startup

setsockopt(soL_INTENTS, ...)
getaddrinfo () ———» process_mam_req() —»-on_resolve req()

resolve_callback()

\A

socket ()

connect () ——— - process_mam_req() —»+-on_connect req()

\

read/write/...()

Figure 6: Interaction of the Socket Intent components.

This is a policy manager that runs on the system as a standalone daemon and can be
contacted by multiple applications. The MAM loads one of the interchangeable policy
modules, which are the components making the decisions while having a maximum of
usable information available. It then hands the results back to the Socket Intent Library,
which applies them.

Summarizing the flow of information between the components of the framework, Fig-
ure 6 shows the functions for setting up policies, performing requests and handling them.

The following sections present the individual components’ design and implementation
in more detail.

5.2. Socket Intent Library

The Socket Intent Library provides an enhanced Socket API to applications, enabling
them to delegate decisions to the policy. Furthermore, the library supports Intents as a
way of aiding policy decisions. It is implemented as a shared library that can be linked
by applications.

The Socket Intent Library implements an interface that is largely based on the original
Socket API described in Section 2.

Its modifications are motivated by the decisions that the framework wants to delegate
to the policy manager and then apply on the connection, such as source and destination
address selection. The focus lies on applications that proactively connect to another
application, performing the steps shown in the diagram of Section 2.2.1. The main points
of modification are those where the association is made and where socket options, e.g.
Intents, are set.

22

5.2.1. Interception of Function Calls

Some of the Socket API calls, such as bind, connect, getaddrinfo and setsockopt, are
modified in such a way that when an application calls one of these functions, they are
handled by the Socket Intent Library first. A first intuition was to use the LD_PRELOAD
environment variable to override socket calls. However, there is a problem with this
approach. Some state about the socket needs to be kept within the Socket Intent Library,
e.g. to store whether an application has already called bind, or to store Intents along
with other information that is later useful for aiding policy decisions. Consequently, calls
that belong to one connection have to be linked to each other. This is straightforward
for calls that operate on a socket file descriptor, since it stays the same for any call on
that particular socket. However, getaddrinfo, which is crucial for destination address
selection, does not take a socket file descriptor. Worse yet, it can be called when no socket
file descriptor exists yet, as explained in Section 2.2.2. Since applications can call several
functions on sockets in an irregular order, it is hard to guess which other socket calls a
getaddrinfo call belongs to.

To address this challenge, an additional parameter is passed to getaddrinfo that helps
linking it to other socket calls for the same connection. This leads to the creation of a new
function with a changed signature, which needs to be invoked directly by the application.
Such a parameter could be a socket file descriptor similar to the other Socket API calls,
but this is difficult if the socket does not exist at the time when getaddrinfo is called.
To solve this problem, a new data structure, the socket context, is introduced and used
instead of a socket file descriptor. This data structure is referenced by the application and
used within the policy. Discarding the LD_PRELOAD solution, we add the socket context
as a parameter to all socket calls that belong to a connection, linking them to each other
and storing all important information about the connection. A complete definition of the
socket context is provided in Appendix C.1.

For instance, the socket context stores which calls have already been performed on
the socket, e.g. whether an application has already called bind explicitly. Intents and
other socket options are stored there, too, as well as the socket’s type and protocol.
Furthermore, the socket context contains the relevant information for association, such as
the local socket address if it has already been set, and the remote socket address once it
has been decided. To gather all of this information, more socket calls have to be modified,
not only the ones where a policy decision is requested. This means that for example, the
socket function is modified to store its information within the socket context.

5.2.2. Policy Decisions

To request decisions from the policy, the Socket Intent Library must contact the MAM.
The communication between the two components is facilitated by sockets within the local
domain, the Unix domain sockets mentioned in Section 2.1. When a decision has to
be made by the policy, the whole socket context is sent from the library to the MAM,
along with the request type. If invoked from getaddrinfo, the type is "resolve request”,
if from connect, it is "connect request”. As one local socket can be used for multiple
such requests, a socket context also gets a context ID which is unique per application
and socket in order to match responses from the policy to requests. Going further, the

23

policy’s responses, such as chosen source address, destination addresses and suggested
socket options are also stored within the socket context.

Source Address Selection A host may have multiple interfaces to choose from, and source
address selection decides which one of them to use for a given connection. This decision
comes into effect using the bind function. If an application has performed source address
selection by itself and calls bind explicitly, it might later rely on this choice. While it
would still be possible to override this decision, we chose to respect it and refrain from
doing source address selection via the policy in this case. If the application does not
choose a source address, we want to delegate this decision to the policy. The latest
point at which we can do so is directly before connecting, where we can be sure that
the application does not plan to do source address selection by itself anymore. At this
point, we want to override the static default policy that would be made and applied
in the kernel. Consequently, we modify the connect function to make a request to the
policy before establishing the connection. Along with the request, information such as
the required address family and the Intents set by the application are communicated to
the policy. If the policy then suggests a source address, we bind to that source address
before completing the association by calling the original Socket API’s connect.

Destination Address Selection The destination address that an application wants to con-
nect to is given in the connect call. However, this address is often the result of name
resolution, as explained in Section 2.2.2. In this case, getaddrinfo is called on a host
name to obtain a list of candidate destination addresses before connecting to one of them.
As mentioned in Section 2.4, it can be assumed that the list of addresses is tried in the
order that it was returned to the application. This implies that by changing that order,
one can bias the application’s final decision. Thus, modifications for destination address
selection are made within the getaddrinfo call, where a resolve request is sent to the
MAM. We chose to provide all information necessary for name resolution to the policy,
letting the policy do both name resolution and the reordering of the result. The reason
is that multiple name servers may be reachable on the different interfaces, and a decision
has to be made which one of them to query over which interface. Furthermore, the result
from the first answering server could be used as is, or one could wait for the other name
servers to respond as well. We decided to entrust these decisions to the policy, where de-
tailed knowledge about the different interfaces is available anyway. However, if the policy
fails to do name resolution and does not return a list of destination addresses, the Socket
Intent Library resolves the name by itself. In this case, there is unfortunately no policy
influence, but at least the application has a chance to get a valid destination address and
can continue operating.

Socket Option Handling Concerning socket options, two cases have to be considered. On
the one hand, socket options, particularly Intents, can be provided by the application
to be communicated to the policy to aid its decisions. On the other hand, they can be
communicated by the policy as an effect to apply on the socket. For the first case, if
an Intent is set on a socket, the Socket Intent Library needs to handle it. This means
that the setsockopt call needs to be intercepted. Intents are recognized by their socket
option level as explained in Section 4.3 and are stored within the library. Other set socket

24

options are stored as well, but also handed down in the network implementation to be
applied right away. At this point, the set socket options are not communicated to the
MAM for an immediate policy response, as they should later aid policy decisions made
during other calls. Thus, a setsockopt call does not request a decision from a policy by
itself, but the information from it is stored within the socket context and affects policy
decisions later. In general, the library gathers a maximum of information and later sends
all of it, including the Intents, to the policy along with resolve or connect request. In
addition to suggesting a source or destination address, a policy can also suggest socket
options for the connection. These options are set when the other results of querying the
policy are handled, i.e. within the getaddrinfo or connect call of the Socket Intent
Library.

5.3. Multi Access Manager

The MAM is a policy manager that receives requests from applications via the Socket
Intent Library and hands them to the policy that is currently in effect. It then commu-
nicates the policy’s decisions back to the library. The MAM does not make any decisions
by itself, but hosts the policies that make them. Arbitrary policies are supported by the
MAM, as long as they implement the interface presented in Section 5.4.2. Implemented
as a standalone application, only one instance of the MAM can be running on a host, e.g.
as a daemon.

5.3.1. Initialization

To be able to provide a maximum of information to policies, the MAM is designed to
gather as much knowledge about the state of the local system as possible. This begins
immediately when it starts up and can be facilitated via system calls, configuration or
gathering statistics. The MAM stores its information in an internal data structure called
the MAM context.

When started, it detects which interfaces are present on the system and which socket
addresses are configured on them. Then it stores a list of available source prefixes in the
context, each annotated by the corresponding interface name and a list of socket addresses
with that prefix that are configured on the interface.

The MAM operates on a list of prefixes® instead of a list of interfaces or socket addresses
because this is the granularity with which a policy wants to distinguish between socket
addresses when making decisions.

Multiple addresses with different prefixes can be configured on a single interface. They
may have different address families, so only one of them applies to a policy request on a
socket with a given address family. Thus it is advantageous for policies to store addresses
with different prefixes separately, as for the purpose of decision making, they are not
interchangeable. However, it is also possible that multiple addresses with the same prefix
are configured on a single interface, e.g. if some of them are temporary in nature. One
example for this are the IPv6 Privacy Extensions [14], which avoid using the exact same

3 A network address typically consists of two parts: Network prefix and host number. In most cases the
address is accompanied by a netmask, which specifies how many bits of the network address count
towards the first part, the prefix. In general, the prefix is understood to identify a subnet, i.e. a
portion of a network as a whole, and the host number specifies a particular host within this subnet.

25

address over a large period of time by changing the host portion once in a while. As long
as the address that is chosen by the policy is valid, addresses with the same prefix are
equivalent with respect to policy decisions. In summary, policies may want to distinguish
between addresses with different prefixes, but they can treat addresses with the same
prefix as equal. Consequently, the MAM provides a list of prefixes to the policy.

Furthermore, it reads the name server configuration of the system and stores it within
the context.

When the global system information has been initialized, the MAM parses its con-
figuration file. In addition to the name of the policy module to load, it often contains
supplemental information for the policy. It can specify a list of prefixes that the policy
should use, which are then looked up in the list of all source prefixes and marked as
"active”. Furthermore, the configuration file can contain arbitrary additional information
about each prefix which is stored within the source prefix list.

After all of the information has been parsed, the policy module is loaded and its ini-
tialization function is called. At this point, it is provided with all of the information that
were gathered.

At the end of the initialization phase, the local Unix domain socket is set up to accept
client requests from applications, and the MAM moves into operation.

5.3.2. Request Handling

Acting as a server on the local system, the MAM serves requests from applications running
on the host, i.e. resolve or connect requests. It does not make any decisions by itself, but
instead delegates them to the policy module that is currently loaded.

Built on the principle of nonblocking socket 10, the MAM can receive and process
requests from multiple applications simultaneously, while calls from one client do not
impede others. Instead of the basic, blocking Socket API, the MAM uses the nonblocking
libevent2 bufferevents API.

When it accepts a client, the MAM receives the entire socket context from it and first
makes a local copy. Then it calls a function of the policy module, depending on the type
of request that should be handled, i.e. resolve request or connect request. The copy of
the socket context is passed to the policy as well, which modifies it. The modified version
then contains the policy’s decisions and is sent back to the client.

After the MAM has finished handling the request, it throws away the local copy of
the socket context. Designed to be as stateless as possible, it does not keep track of the
connections once they have finished.

5.4. Policies

One of the key questions within the framework is what policy to use. We note that the
specific policy that is most beneficial may depend on the configuration of the host, the
current location, the current network availability, etc. Therefore, we decided to make
policies interchangeable and provide a generic framework in which one can develop, use
and evaluate different policies.

26

5.4.1. Structure and Operation

A policy’s logic is implemented within a dynamically loaded library, also called the module.
The name of this module is specified in the configuration file for the MAM, along with
additional information such as parameters for the whole policy or for individual prefixes.
One policy can have multiple configuration files and thus the same logic can operate with
different parameters, giving it the possibility to account for different scenarios using the
same module.

The module implements at least four functions: init, on resolve request, on -
connect_request and cleanup.

The init function takes the MAM context as parameter, from which it retrieves in-
formation about the current state of the system and about the additional information
provided in the configuration file. It can use this information to set up its internal data
structures, e.g. a list of candidate source prefixes that is already filtered to only contain
those prefixes that the policy is configured to use. These internal data structures should
be released within the cleanup function.

The decision making functions that handle resolve and connect requests have access to
these internal data structures, but they can also read information from the MAM context.
In addition, they receive the socket context that was sent from the Socket Intent Library
as described in Section 5.2.1 to help their decisions. After the decisions have been made,
this context is modified and sent back as a reply.

Generally, a function that is directly called from the MAM should return in a timely
manner without blocking the entire MAM’s operation in order to avoid impeding other
clients’ requests.

Policies are allowed to issue their own queries over the network, e.g. for name resolution,
but for the above reason they are strongly discouraged to do so using blocking Socket 10
through the basic Socket API shown in Section 2. Instead, policies should add their queries
to the event base for nonblocking Socket IO that the MAM operates on as explained in
Section 5.3.1. They can implement a callback function to be invoked when their query
returns in order to complete the overall request.

This is the reason why sending back the modified context is done by the policy, not by
the MAM. When a call to a decision making function of a policy returns, this does not
necessarily mean that the request has already been fully handled. Situations can occur
when the policy function returns, but has issued queries that have not completed yet and
thus its callbacks have not been invoked yet. In fact, since the MAM supports arbitrary
policies, it cannot make assumptions about the policy’s internal implementation details,
so it cannot know whether there are still callbacks pending. Thus it does not know when
the request has been fully handled and should leave the task of responding to the policy.

5.4.2. Types of Decisions

Policies consist of a set of rules for making decisions such as source or destination address
selection. They can take plenty of information into account, e.g. about the connection
or about the interfaces currently available on the system. The decisions are made upon
receiving a resolve request or connect request from an application through the Socket

27

Intent Library, as discussed in Section 5.2.1. They are communicated back to the library,
where they can be applied on the socket.

Source Address Selection This decision is typically made when a connect request has been
received. However, policies are advised to check whether the application has already set
a source address by itself before making the effort. If this is not the case, the list of
available local prefixes is scanned for the most suitable one, based on the policy logic and
the information available to it. A valid socket address for this prefix is then communicated
back to the Socket Intent Library as the suggested source address, to be used as part of
the association there.

Destination Address Selection When a resolve request has been received, a policy can
influence an application’s selection of destination address. Having the query information
available, name resolution is performed over one or multiple of the local interfaces. The
policy decides how many interfaces to use and whether to wait for a reply on all of
them, as it can abort the resolving step when it deems that it has sufficient information.
Then, the received list of candidate destination addresses is ordered, moving the most
desirable destination address, according to the policy, to the head of the list. This list is
then communicated back through the Socket Intent Library to the application, where the
addresses are typically tried in the order that they were given.

Socket option handling Having received either of the requests, a policy can choose to pro-
pose arbitrary socket options to be set on a socket. They can be required e.g. for bundling
multiple interfaces by enabling MPTCP [17] or tuning parameters such as changing the
congestion control algorithm. The list of proposed socket options is communicated back
to the Socket Intent Library along with any other decision that the policy has made.
Effects are applied on the socket directly before the connection is established.

5.4.3. Examples

A fairly simple application unaware policy would be to configure one ”default” interface
that one deems "best”. In the list of usable prefixes in the configuration file, one could
be marked as the default. Upon a connect request, source address selection could be
performed, always suggesting this default address.

In Appendix C.3, the implementation of such a sample policy is shown, containing also
a name resolution callback function to illustrate its use within the nonblocking socket 10
scheme of the MAM.

Another policy that takes information from the application, i.e. Intents, into account,
would be to use high bandwidth interfaces for application requests of the category ”bulk
transfer” and low latency interfaces for application requests of the category ”query”.

Here we make use of the Intents from the socket context to aid source address selection
and choose among them based on labels such as "high bandwidth” or ”low latency”. Such
additional information about prefixes must be provided somewhere, e.g. by specifying it
in the configuration file or by having the MAM collect measurements on the interfaces,
evaluate them and provide them to the policy.

28

6. Adding Applications and Policies

As shown in Sections 4 and 5, applications can express a wide range of preferences and
useful pieces of information through the modified Socket API. These hints are then taken
into account by a proactive policy in order to choose a suitable source interface, bias the
destination address selection or tune parameters within the network stack.

Discussing the more practical aspects of this, this section provides guidance on how to
incorporate Intents into an application, illustrated through the example of modifications
to the HT'TP client wget.

Furthermore, a variety of policies is needed to fully leverage the diversity of scenarios,
taking into account the different information given in different use-cases. Consequently
it is important that policies can be conceived and implemented in a simple and efficient
way. This process is described in the second part of this section and demonstrated by
showing and explaining the code of a sample policy.

6.1. Modifying an Application to Support Intents

Generally, any application that communicates over the network can be chosen to support
Intents, as long as its source code is available. It only requires minor modifications to
enable the application to benefit from policy decisions, and setting any of the Intents
described in Section 4 is fairly straightforward.

One necessary step is replacing calls to the blocking version of the Socket API described
in Section 2 with the modified ones described in Section 5.2. Next, developers choose
Intents that suit their application, obtain meaningful values for them and set them through
the modified Socket API.

6.1.1. Substituting the Socket Calls

The first change is replacing the existing Socket API calls with the ones that go to the
Socket Intent Library, enabling it to enforce policy decisions for this application. This ba-
sically means substituting each function call to the Socket API with its counterpart of the
modified Socket API presented in Section 5.2. Since the signatures are fairly similar, this is
rather straightforward. The header file clib/muacc_client.h, which contains the signa-
tures, needs to be included, as well as the utility functions in clib/muacc_client util.h.

Each function of the modified Socket API takes one additional parameter, the socket
context, which enables the Socket Intent Library to link function calls that belong to the
same connection and to store information about it as explained in Section 5.2.1. The
context has to be declared by the application and can be initialized explicitly as shown
in Listing 1, or implicitly at the first time that it is used.

The same context needs to be supplied to all socket calls that belong together, as well
as the corresponding getaddrinfo. However, it is possible to release and reinitialize a
socket context explicitly, and then use it for a new connection. This can be useful in the
case of multiple connections being made in succession, e.g. within a loop. Reusing an
existing context for a new connection without reinitializing it is not recommended, as it
may lead to anomalies. The context should be released when it is no longer needed to
free its allocated resources.

29

muacc_context_t ctx;
muacc_init_context (&ctx) ;
[...]

muacc_release_context (&ctx) ;

Listing 1: Initializing and releasing a context, from wget/src/http.c

Furthermore, it is important that the context is available to all functions of the Socket
Intent API, so the scope within which it exists needs to be chosen carefully. This is
especially relevant if not all socket calls are invoked directly from the same function, but
hidden within more complex helper functions specific to the application. For this, there
are two possible solutions: Declaring the context as a global variable, or add it as an
additional parameter to the function in question. For wget, the latter was chosen several
times, causing the signatures of some wget-internal methods to change. The excerpt from
the code in Listing 2 illustrates this.

int connect_to_host (muacc_context_t *ctx, const char xhost, int port)
{
/* Initialize muacc context */
if (ctx == NULL)
{
ctx = malloc(sizeof (muacc_context_t));
memset (ctx, O, sizeof (muacc_context_t));

if (muacc_init_context (ctx) != 0)
{

ctx = NULL;
}

}
struct address_list *al = lookup_host (ctx, host, 0); //function
contains getaddrinfo call

[...]

sock = connect_to_ip (ctx, ip, port, host); //function contains
socket and connect calls
if (sock >= 0)
{
/* Success. x/
address_list_set_connected (al);
address_list_release (al);
return sock;

Listing 2: Modified helper function, from wget /src/connect.c

Furthermore, NULL can be supplied as a pointer to the context, either causing the
application to allocate a context within the function or causing the Socket Intent Library
to fall back to the basic Socket API without any policy decisions. This is useful in cases
where the function signature requires a context, but the function is called from portions

30

of the code where policy decisions are not needed, so one does not wish to manage a
socket context there. One example is the FTP portion of the wget code which was to be
modified as little as possible.

6.1.2. Setting Intents

In order to aid policy decisions by providing hints concerning expected preferences or
characteristics of communication, applications may set any of the Intents described in
Section 4.2. Applications will be able to specify one or multiple of them, depending on
the type of the application and connection.

After determining the Intent and its value that is to be to set on a socket, applications
can set it using the muacc_setsockopt call of the modified Socket API. They need to
provide the context, the socket, the Intents option level SOL_INTENTS, the appropriate
option name, a pointer to the value, which will be copied in the call, and its length.
Definitions for the Intents are found in the header file 1ib/intents.h, which needs to be
included.

Two examples, namely category and filesize, are described here in slightly more detail.

Category As described in Section 4.2, the category Intent places a connection within a
broad class of traffic. It is often obvious which category should be chosen for a certain
connection, e.g. a video streaming application could use the stream category for all of
its sockets. Applications that handle connections more generically could get the category
from information available to them, e.g. browsers could derive the category from the
content type of an object in its HT'TP response. In wget, the category can be explicitly
set on the command line by users and is then used for all connections in this run. Once
known, the category socket option can be set on the corresponding socket, causing it to
be stored in the context and sent to the MAM along with any request as long as long as
the context is not released.

Filesize The filesize Intent provides the size of an object to be fetched in bytes. In order
to determine this, applications can for example issue a preliminary request asking for meta
information such as the file size without retrieving the object yet. It can then be fetched
in a second connection with the filesize Intent set. This approach was chosen for wget,
where a partial GET request over the first N bytes of an object is performed, and setting
the filesize Intent for a second request to retrieve the rest of the object. The advantage
over a HEAD request is that the overhead of establishing the connection twice is avoided
for small objects, as they fit within the response to the first request.

If determining the file size up front is not practical, it can also be estimated, e.g. by
assuming that software updates for a certain application always have a size that roughly
corresponds to the size of the existing application.

6.1.3. Building the Application

Once source code modifications have been made, the application has to be compiled and
linked. The Socket Intent Library needs to be present, since the modified application uses

31

it. As a shared library, it should be installed on the system, but it can also be placed in a
fixed directory structure relative to the application. It can then be added to the linking
process, e.g. within the Makefile.

6.2. Writing a Policy

Policies are plugins for the MAM which are loaded, configured and called to make de-
cisions within the framework. They consist of one or multiple configuration files and a
dynamically loaded library implemented in C, the module. The module must provide
the interface shown in Listing 3, i.e. implement these methods which are called from the
MAM. The first two are invoked when setting up and shutting down the module, and
initialize or tear down data structures that the policy needs for operation. The latter
are invoked when a request from a client application has been received, and they make
the policy decisions, e.g. source or destination address selection. Appendix C.3 includes
the full code of a sample policy module, parts of which are discussed in the following
sections. They are marked with their line numbers to simplify finding the corresponding
parts within the code in the appendix.

int init(mam_context_t *mctx) ;

int cleanup(mam_context_t *mctx) ;

int on_resolve_request(request_context_t *rctx, struct event_base *base)
>

int on_connect_request(request_context_t *rctx, struct event_base *base)

)

Listing 3: Interface between MAM and policy module, from policies/policy_sample.c

6.2.1. Writing a Configuration File

The configuration file, which is passed to the MAM as a command line argument, instructs
it to load the policy module. Note that a policy can have multiple configuration files, so
the same policy module can be employed in multiple scenarios, using the same logic but
different parameters. The configuration file can provide additional information to the
policy as a whole in a key-value manner. Keys start with a letter and may contain letters
and numbers, values are strings or numbers. An example is shown in Listing 4.

Furthermore, a configuration file often includes a list of prefixes that are present on
the system and that should be used. As explained in Section 5.3.1, the members of the
previously auto-detected list of source prefixes are annotated when the configuration file is
parsed by the MAM. It is then possible for the policy to easily filter out prefixes that are
not marked as configured and enabled. Furthermore, additional information concerning
the prefix can be specified in a key-value manner similar to the case of whole-policy
information above. When the configuration file is parsed, the per-policy and per-prefix
information is placed within dictionaries of key-value pairs within the MAM context and
the prefix list. As these dictionary can be queried from the policy, all information from
the configuration file is available to the policy.

The example shown in Listing 4 enables a prefix and sets it as default.

32

97
98
99
100
101
102

policy "policy_sample.la" {
set foo "bar";

};

prefix 192.168.178.34/24 {
enabled 1;
set default = 1;

I8

Listing 4: Sample MAM configuration file, from mamma-sample.conf

6.2.2. Setting Up and Shutting Down the Module

Firstly, the init function sets up the data structures that are used within the policy.

Many policies require additional information on a per-prefix basis, e.g. the category
Intent for which a given prefix is best suited or a flag that tells whether a given prefix is
the default for its address family. For the purpose of storing this information and making
it easily accessible to the decision making functions within the policy, a data structure
can be defined. Setting up such a dedicated data structure instead of just querying the
dictionary of keys and values from the configuration file has some advantages: For one
thing, it allows to define reasonable defaults in case that an information has not been set
for a certain prefix. Furthermore, it helps to remove all ambiguity from the data that was
entered in the configuration file, such as by converting all values to lower case. All such
data handling can be implemented at a central point, i.e. in the function that fills the
data structures, making the overall code simpler and more readable.

The contents of this structure should correspond to the information given in the con-
figuration file. The example used in the sample policy defines a flag of whether the given
prefix is the default or not. It is possible to attach such a data structure to each element
of the prefix list through a generic pointer. For this, a function can be invoked on each
item of the list, which is explained later in more detail.

Furthermore, many policies make use of a list of prefixes present on the system that
have been enabled in the configuration file, which is a subset of the overall prefix list.
It is often desired to set up such a list of both IPv4 and IPv6 prefixes, which should be
initialized as NULL and filled when initializing the module.

An example of an initialization function is shown in Listing 5. There, for each element of
the prefix list, a function is called for setting up the per-prefix policy information. Then
the list of enabled IPv4 and IPv6 prefixes is populated by calling the utility function
available for this task. Note that this does not make a ”deep copy”, so the source prefix
data structures from the MAM context are not copied. Instead, new linked lists of pointers
to these data structures are created, only containing the desired prefixes.

int init(mam_context_t *mctx)
{
printf ("Policy module \"sample\" is loading.\n");

g_slist_foreach(mctx->prefixes, &set_policy_info, NULL);

33

103

104
105
106
107

113
114
115
116
117
118
119
120
121

29
30
31
32
33
34
35
36
37
38
39

40
41
42
43

make_v4v6_enabled_lists (mctx->prefixes, &in4_enabled, &in6_enabled)

)

printf ("\nPolicy module \"sample\" has been loaded.\n");
return O;

Listing 5: Policy initialization function, from policies/policy_sample.c

The cleanup function is the opposite of init: It serves to tear down all policy-specific
data structures and restore the MAM context’s source prefix list to its original state. An
example is shown in Listing 6. Note that the freeing functions here do not ”deep free”the
data structures within the list, so the original source prefix list remains intact.

int cleanup(mam_context_t *mctx)

{
g_slist_free(in4_enabled) ;
g_slist_free(in6_enabled) ;
g_slist_foreach(mctx->prefixes, &freepolicyinfo, NULL);
printf ("Policy sample library cleaned up.\n");
return O0;

}

Listing 6: Policy cleanup function, from policies/policy_sample.c

The above examples make use of a policy-specific data structure for storing per-prefix
information, as well as a number of helper functions.

If a policy uses its own data structures, it needs helper functions to set them up, tear
them down and print them. One of these data structures should be attached to each
element of the linked list of prefixes. The corresponding functions can be written in such
a way that they only handle one element, and later be called on each element of the list.

An example for such a function is shown in Listing 7. It sets up a policy data structure
and queries the dictionary to fill it with information. The last line shows how the new
data structure is linked from the element in the source prefix list, which can now access
it from its policy_info member, a generic pointer.

void set_policy_info(gpointer elem, gpointer data)

{
struct src_prefix_list *spl = elem;
struct sample_info *new = malloc(sizeof (struct sample_info));
new->is_default = O0;
if (spl->policy_set_dict != NULL)
{
gpointer value = NULL;
if (((value = g_hash_table_lookup(spl->policy_set_dict, "default
")) != NULL) && value)
new->is_default = 1;
}
spl->policy_info = new;
}

Listing 7: Policy data structure, from policies/policy_sample.c

34

161
162
163
164

166
167
168

170
171
172
173
174
175

After establishing lists of usable prefixes, it is often desired to print them along with
their associated policy-specific information. For this purpose, policies are advised to define
a print policy_info function that takes a pointer to the opaque policy data structure
from the prefix list and prints the policy-specific information. This function serves as a
helper to an existing utility function, print_pfx_addr, which outputs a list of addresses
when given a prefix list. If the prefixes in this list have additional policy information
attached, the output is supplemented by print_policy_info.

In order to do proper memory management, policies should clean up the data that they
have set up when terminating or reloading. This involves releasing the policy-specific
data structure for each prefix and removing the pointer to it in order to make space for
an eventual new policy that could be loaded later.

6.2.3. Destination Address Selection

The on_resolve_request function is invoked every time a request to resolve a host name
is received from a client. From there, destination address selection can be performed,
which is a little bit less straightforward to implement than source address selection.

If the policy chooses to do destination address selection® , it needs to resolve the name
by itself, so that it can then reorder the resulting list of destination addresses. However,
the MAM is designed for asynchronous communication, as explained in Section 5.3.1,
so policies should not simply use the blocking getaddrinfo call. This would block other
clients that may have sent requests to the MAM at the same time. Instead, policies should
also adapt a nonblocking solution. The suggested choice is to use the same technique as
the MAM, namely the event-based libevent?2 library. For this, the name resolution
request is added to one or more DNS event bases along with the host name and hints for
name resolution, as well as a callback to be invoked when the request completes. The
event base also specifies which name server to use. An example is shown in Listing 8.

int on_resolve_request(request_context_t *rctx, struct event_base *base)
{

struct evdns_getaddrinfo_request *req;

printf ("\tResolve request: %s", (rctx->ctx->remote_hostname == NULL
? "' : rctx->ctx->remote_hostname)) ;

/* Try to resolve this request using asynchronous lookup */
req = evdns_getaddrinfo(
rctx->mctx->evdns_default_base,
rctx->ctx->remote_hostname,
NULL /* no service name given */,
rctx->ctx->remote_addrinfo_hint,
&resolve_request_result,
rctx) ;
printf (" - Sending request to default nameserver\n");

4Policies can avoid the complexity of destination address selection by just sending back the same request
context that was received. In this case, they skip name resolution entirely and the client library will
resolve the name by itself. In any case, the policy must make sure that a reply is sent back to the
client at some point. Else, the client application that has issued the request to the MAM hangs while
waiting for an answer indefinitely.

35

176
177
178
179
180
181
182
183

127

128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

if (req == NULL) A
/* returned immediately - Send reply to the client */
_muacc_send_ctx_event (rctx, muacc_act_getaddrinfo_resolve_resp);
mam_release_request_context (rctx);
printf ("\tRequest failed.\n");
}

return O;

Listing 8: Resolve request handling, from policies/policy_sample.c

The actual destination address selection is implemented in the callback function, where
the list of candidate destination addresses can be sorted and sent back to the client.
The example given in Listing 9 simply sends back the received destination address list
unmodified.

void resolve_request_result(int errcode, struct evutil_addrinfo *addr,
void *ptr)

{
request_context_t *rctx = ptr;
if (errcode) {
printf ("\n\tError resolving: %s -> %s\n", rctx->ctx->
remote_hostname, evutil_gai_strerror (errcode)) ;
}
ciisie
{
printf ("\n\tGot resolver response for %s: %s\n",
rctx->ctx->remote_hostname,
addr->ai_canonname ? addr->ai_canonname : "'");
assert (rctx->ctx->remote_addrinfo_res == NULL) ;
rctx->ctx->remote_addrinfo_res = addr;
print_addrinfo_response (rctx->ctx->remote_addrinfo_res);
}
// send reply
_muacc_send_ctx_event (rctx, muacc_act_getaddrinfo_resolve_resp);
}

Listing 9: Resolve request callback, from policies/policy_sample.c

6.2.4. Source Address Selection

Every time a connect request is received from a client, the on_connect_request function
is called. There it is possible to select the local interface by proposing an address to bind
the socket to before connecting. Of course, if the application has already called bind
itself, its choice of local source address should be respected. Thus, for source address
selection, the policy should first check if a source address already exists, and, if this is not
the case, find a suitable source address from its prefix lists. Then it inserts the proposed
source address into the request context and sends it back to the client.

36

67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

An example of such a function is shown in Listing 10. Here, the actual decision making,
i.e. the selecting of the proposed source address, was moved to another function which
is called from there and shown in Listing 11. The debugging output that is normally
provided in this function has been omitted in Listing 10, but the complete function is
shown in Appendix C.3 from line 189 on.

int on_connect_request(request_context_t *rctx, struct event_base *base)
{
if (rctx->ctx->bind_sa_req != NULL)
{ // already bound
printf ("\tAlready bound") ;

}
else
{
// search address to bind to
set_sa_if_default(rctx, sb);
}

// send response back
_muacc_send_ctx_event (rctx, muacc_act_connect_resp);
mam_release_request_context (rctx);

return O0;

Listing 10: Connect request handling (without debug output), from
policies/policy_sample.c

For making policy decisions such as selecting a source address, all available information
can be taken into account, e.g. from the request context and from the lists of source
prefixes with the additional policy-specific information.

The example in Listing 11 chooses a source address based on the available per-prefix
information. To do this, it searches for the first prefix configured as default for the given
address family. It then suggests this prefix’s first address as a source address to bind to,
effectively causing the corresponding interface to be used for that connection.

void set_sa_if_default(request_context_t *rctx, strbuf_t sb)
{

GSList *spl = NULL;

struct src_prefix_list *cur = NULL;

struct sample_info *info = NULL;

if (rctx->ctx->domain == AF_INET)
spl = in4_enabled;

else if (rctx->ctx->domain == AF_INET6)
spl = in6_enabled;

while (spl != NULL)
{
cur = spl->data;
info = (struct sample_info *)cur->policy_info;
if (info != NULL && info->is_default)
{

37

84

85
86
87
88
89
90
91

B W N =

/* This prefix is configured as default. Set source address

*/
set_bind_sa(rctx, cur, &sb);
strbuf _printf (&sb, " (default)");
break;

b
spl = spl->next;

Listing 11: Source address selection, from policies/policy_sample.c

6.2.5. Building the Policy

A policy module is implemented in C as a dynamically loaded library, i.e. written and
compiled like a regular library, but linked with the "module” switch and, currently, a flag
to avoid versioning. To simplify this, the existing modules have been built using Libtool’s
libltdl [13)].

Libtool aims to avoid symbol conflicts by prefixing exported symbols with <modulename>
LTX. When an application such as MAM loads a symbol from the module, this prefix is
cut off to get the symbol’s "real” identifier. Since the prefixed symbol names are long and
impractical to type, it is recommended to redefine them at the beginning of the module

source code file. Listing 12 is an example from the sample policy module.

#define init policy_sample_LTX_init

#define cleanup policy_sample_LTX_cleanup

#define on_resolve_request policy_sample LTX_ on_resolve_request
#define on_connect_request policy_sample_ LTX_on_connect_request

Listing 12: Redefinition of symbols, from policies/policy_sample.c

For building and installing the policy, it is recommended to use the setup that is also
used for building the MAM, the Socket Intent Library, their components and the existing
policy modules. In order to do this, one simply has to add the name of the policy module
to be built, its source code files and the name of the corresponding configuration file(s).
If utility functions have been used within the policy module, the utility header and source
code file must also be provided. An example is shown in Listing 13.

pkglib_LTLIBRARIES = policy_sample.la
mammaconfdir=$(sysconfdir)/mamma
mammaconf _DATA = mamma-sample.conf

policy_la_LDFLAGS = -module -avoid-version

policy_sample_la_SOURCES = policies/policy_sample.c policies/policy_util
.h policies/policy_util.c

policy_sample_la_LDFLAGS = $(policy_la_LDFLAGS)

Listing 13: Instructions for building the policy, from Makefile.am

38

7. Evaluation

In this section, we assess the potential benefits of Socket Intents to applications. To do
this, we use an emulated environment with a client that is connected to a server over two
different access networks: One interface resembles a relatively low bandwidth DSL line
with fast-path enabled (6 Mbits downstream and 768 Kbits upstream bandwidth, 10 ms
RTT), the other one resembles an LTE link (12 Mbits downstream and 6 Mbits upstream
bandwidth, 70 ms RTT). Over this network, we run HTTP transfers and measure their
completion time to evaluate their performance. We conduct three experiments: In the
first one, the "Bulk Transfer VS. Query”, retrieving a website competes with a large
download running in parallel and we employ a policy that distinguishes between them
using the category Intent. Secondly, we download files of varying sizes over different
interfaces and determine the ”Filesize Threshold”, the threshold over which the interface
with higher bandwidth but higher delay is preferable, as parameter for a policy that uses
the filesize Intent. Thirdly, we compare the filesize policy from the second experiment to
an application unaware round robin policy that makes use of both interfaces in parallel.
Hereafter, the setup and the experiments with their results are described in more detail.

7.1. Setup

An overview of our testbed setup is shown in Figure 7. It consist of three machines:
One acts as a client, one as a server and they connect to each other through a third,
intermediate machine, the shaper. The client has two interfaces and thus two links to
the shaper, i1 with relatively low delay but also only moderate bandwidth and i2 with
relatively high delay but higher bandwidth. The second machine, the traffic shaper, serves
to emulate these characteristics on the interfaces i1 and i2. It also connects the client to
the third machine, the server, from which the client can retrieve objects over both of its
access links. Constructing use cases for this, we choose HT'TP since this is an ubiquitous,
stateless protocol for which a lot of software exists.

il (DSL)

—|i2 (LTE) - —

Client Shaper Server

Figure 7: Evaluation setup: Emulated multihomed host

For the different scenarios, we have three main types of workload lying on the server:
One huge file to emulate a bulk transfer, mirrors of real web pages to emulate web brows-
ing, and a set of autogenerated files of specific sizes to assess the filesize policy.

Our use case scenarios are emulated in an environment where we have explicit control
over all components, the RouterLab. All of the machines (Intel Xeon 15420, 2x4 Cores,
16GB RAM) are interconnected via 1Gbit/s Ethernet links. The traffic between client

39

and server is routed via a machine of the same type on which we run a traffic shaper
to simulate the characteristics of different access networks. More specifically, for shaping

we use the T'C hierarchical token bucket (HTB) scheduler and for delay the T'C' Network
emulator scheduler.

7.1.1. HTTP Client and Server

We modified one of the "simplest” HTTP clients, namely GNU wget version 1.14.4, to
enable it to set Socket Intents. More specifically, we added command line options to it,
which instruct wget to set the Intents ”category” and "filesize”.

The category for a run of the application can be explicitly provided on the command
line, and any of the values presented in Section 4.2 are possible. In practice they will
most likely be "query” for small downloads or ”bulk transfer” for large downloads. This
information is useful for policies, since the latter are more sensitive to delay while the
former are more sensitive to bandwidth availability. For the filesize Intent, wget sets the
object size, which we do not necessarily know up front. Therefore, wget was modified
to perform its downloads in two phases, taking advantage of the HTTP range query
capabilities. More specifically, our modified wget first issues a GET request with a Range
header for the first m bytes of each object® in order to acquire the size of the object n.
It then issues another GET request with a new connection for which it sets the filesize
Intent to n to download the remaining n — m Bytes. Of course this two-phase download
is only enabled when wget is instructed to use the filesize Intent.

Furthermore, wget was modified to precisely measure the time for resolving names,
connecting to a server (i.e. the initial handshake and query) and retrieving the object
in milliseconds, which are then logged to a file. Completion time of a request has a
major influence on web Quality of Experience (QoE) for end users, which is why precisely
measuring it is important to our evaluation.

One unfortunate limitation of wget is that it neither supports HT'TP pipelining nor
multiple TCP connections in parallel. It simply fetches one objects after another in
sequence, thus it cannot use multiple network interfaces at the same time by default. In
order to take advantage of two independent network interfaces simultaneously, one has to
run multiple wget instances.

As the HT'TP server, we choose the widely used Apache2 web server version 2.2.22 and
run it in its default configuration, only serving static websites and other objects to clients.

7.1.2. Workloads

With regards to the workload, we use objects of varying sizes. For the bulk transfer, we
use a large file of 48 MBytes to emulate the download of a system update. To emulate
web browsing, we mirror two web pages: The landing page of a popular newspaper,
New York Times (www.newyorktimes.com), and a sub-page of a popular photo sharing
site, Flickr (www.flickr.com/explore) from Jun 10th 2013. Both pages have a size

5 The m for the initial request should be chosen in order to address the trade-off when a TCP download
is dominated by the round trip time and when it is dominated by the network bandwidth. We suggest
to use values for m that fit within the initial TCP congestion window.

40

www.newyorktimes.com
www.flickr.com/explore

of 2.8 MBytes. The first one has roughly 130 embedded objects which are relatively
small with a range from 48 bytes to 263 KBytes, a median of 6 KBytes, and a mean
of 21 KBytes. The second one consist of only 30 embedded objects with size between
43 bytes to 572 KBytes, a median of 65 KBytes, and a mean of 94 KBytes. Both pages
were retrieved using Google Chrome’s save whole webpage function and copied to the
server. Furthermore, for Experiment 2 we create an artificial workload of objects from
10 KBytes to 2 MBytes in steps of 10 KBytes.

7.1.3. Network Emulation

The multihomed client is equipped with two independent Ethernet interfaces on which
we simulate different access networks by using different parameters for the traffic shaper.
To allow a fair competition, we choose opposite properties for the two interfaces, which
are referred to as i1 and i2. The interface i1 resembles a relatively low bandwidth DSL
line with fast-path option enabled. Its parameters are 10ms RTT, 6Mbits downstream
bandwidth and 768Kbits upstream bandwidth, as this is the type of DSL line in most parts
of Germany [5]. To have an even larger difference compared to i2, we also use a slightly
modified version of i1 where useful. The interface i1’ has only 2 Mbits downstream,
which corresponds to a very low bandwidth DSL line as it is available in some of the more
rural parts of Germany. Finally, 12 resembles a reasonable LTE network access, i.e., 70ms
RTT, 12Mbits downstream and 6Mbits upstream [10].

7.2. Experiments

Having presented the setup of our emulation in detail in the previous section, here we
describe the three illustrative use cases mentioned in the introduction. We constructed
and ran them as experiments in our RouterLab. As they are all based on fetching objects
from the HTTP server, we measure the completion time in order to compare different
policies and how good they perform.

7.2.1. Bulk Transfer vs. Query

In our first scenario we revisit a performance problem often encountered at home: browsing
a web site while downloading a large file. The first one is response time critical and we
impatiently wait for its completion while the latter, which is not as important to our user
experience, is hawking the bandwidth. We simulate this scenario by running two parallel
wget instances: (i) wget with Intent "bulk transfer” for the large file (ii) wget with Intent
"query” for our two websites. The policy that we use here is that bulk transfers are sent
over the higher bandwidth interface i2 and queries over the low delay interface i1. When
no policy is configured, the client is restricted to either of the two interfaces.

While doing this experiment we encountered some interesting problems. In cases where
only one interface was used for both the bulk transfer and the web queries, the former used
up all of the interface’s capacity quite aggressively, which led to starvation of the website
query until the large transfer finished. We think that the bulk transfer’s TCP congestion
window scaled up to the point where it clogged all of the bandwidth, and as the small web
site queries could not compete at all and there was no other traffic within the network,

41

40

30

20

Completion time [s]

10

0 - T T 1 T T 1
i1 i2 i1 and i2 i1 i2 i1 and i2
. with Intents . with Intents
New York Times Flickr

Figure 8: Scenario 1: Boxplot of completion times.

it did not suffer any loss, which would have decreased the window size. We see this as a
limitation of our emulated environment, since in a more realistic setting, the bulk transfer
would have eventually experienced packet loss and would then have decreased its window
size, allowing other transfers to complete. To prevent the bulk transfer from clogging the
bandwidth too aggressively, we disabled TCP window scaling for it, limiting the window
size of the bulk transfer to a value that allows other transfers to compete. Doing that
also prevented the bulk transfer from fully utilizing the Link i2, but we decided to stick
to this limitation.

The measured completion times for the web downloads are shown in the boxplot of
Figure 8. Recall that a boxplot displays the median, the spread and the skewness of all
experiments in one plot. The experiment was repeated 30 times.

Overall, the download time for the Flickr page is smaller than for the New York Times
one although the total size is about equal. However, the median object size of Flickr
is significantly larger. Moreover, using the high bandwidth interface i2 rather than the
low bandwidth interface is beneficial. Enabling Socket Intent policies improves the page
download performance by more than a factor of 60% without penalizing the bulk down-
load. The reason is that the page download can now be scheduled on the network interface
i1 and does no longer compete with the bulk download. We note that this example is in
some sense the best case as we can now fully use the second network interface.

In future work we plan to evaluate how the policy can take advantage of multipath
transport protocols such as MPTCP. We predict that using MPTCP will degrade the
performance of the web page download while increasing the performance of the bulk
download.

7.2.2. Offload by Filesize

We want to utilize the filesize Intent for choosing the ”best” interface to download an
object of a certain size. The purpose of the second scenario is to find the threshold above
which an object should count as ”large”for the purpose of our policy, which uses the low
delay interface i1 for small objects and offloads large transfers to the high bandwidth
interface i2. This means that we determine the value ¢ of the filesize Intent above which
connections should be offloaded to the high bandwidth interface.

42

.0
n | —e— i1 only (median, 1st/3rd quantile) °°
N —&— 2 only (median, 1st/3rd quantile) o u WHHI‘A
—— Intents (median, 1st/3rd quantile) oy mwuuwﬂ
& 9 uﬁgqullfﬂi"
= ﬂwm
) L
E gt
= Te) Ilnlxﬂl “f,o’
.5 - mxuffﬁ"’"lfi 2
@ L, o
3 o ‘m;mﬁ .Ox:u_*,,
§ — 7] u"‘xm;,u‘ xxxxx o £
0 | e
o AT e
e
o &
A= B
e T T T T T
0 500 1000 1500 2000
Filesize [KB]

(a) With i1 (6Mbit/s) and choosing i2 for filesizes above 1400 KB

n | —e— i1' only (median, 1st/3rd quantile)
o —&— 2 only (median, 1st/3rd quantile)
—+ Intents (median, 1st/3rd quantile) o
z 2 o
) .o
£ ot
- [Te) o
IS o °
kS o
g 3 7 o ® - + (AIALTA
S o’ x A ' '
° o FLE ﬁﬁxﬁﬁ‘ﬂ’t‘ﬂ
S RS S ar
A
Ao
S] o
° 5 T T T T T
0 100 200 300 400 500
Filesize [KB]

(b) With i1’ (2Mbit/s) and choosing i2 for filesizes above 100 KB

Figure 9: Scenario 2: Download times per object size

For this, we compare the use of an interface with low RTT and moderate bitrate against
the use of an interface with higher RTT and high bitrate. For the low bandwidth interface,
we choose i1 (6 Mbits/s downstream, 10 ms RTT) in the first run of the experiment and
the slight modification 11’ (2 Mbits/s downstream, 10 ms RTT) in the second run. For
the latter, the high bandwidth interface, i2 (13 Mbits/s downstream, 70 ms RTT) is used.
Small transfers should benefit from the low RTT of i1 or i1’ while large transfers benefit
from the higher bitrate of i2. In order to find the threshold filesize, we choose an artificial
workload consisting of objects from 10 KBytes to 2 MBytes in steps of 10 KBytes which
we download using a single wget instance. Firstly, the completion times of the transfers
using only a single interface were determined. The filesize at which the completion time
on i2 is smaller than on i1 or 11’ marks the threshold ¢ for the filesize policy. The results
of using each interface individually compared to using the resulting Intents enabled filesize
policy are shown in Figure 9.

43

Figure 9 includes the median of the 15 experiment runs as well as the 1st and 3rd
quantiles. Note that the experimental variability is small as the quantiles hardly differ
from the median. For the second run, the threshold was considerably lower than for the
first run, so there we only show the results for files from 10 KBytes up to 500 KBytes
and therefore use a different scale on the x axis. We see that in the first run, using the
threshold of 1400 KBytes ensures that the policy is always picking the "best” interface
and in the second run, this threshold drops to 100 KBytes. In both cases, there is a small
overhead of wget retrieving the actual filesize with the initial partial request of 15 KBytes
of the two-step download. However, this overhead is minimal compared to the overall
completion time.

We were surprised by the fact that the small change in bitrate between i1 and i1’ had
such a high influence on the threshold for the filesize policy. In particular, the threshold
of 1400 KBytes seems quite large to us, while the threshold of 100 KBytes in the second
run appears more reasonable. The high threshold shows that the low latency of i1 gives
it an advantage over 12 for objects up to this size. We note that suitable values for policy
parameters, such as the threshold in this example, largely depend on the scenario. They
can be heavily influenced by individual interface parameters, the current client location
within the network, and the congestion.

7.2.3. Filesize Intent vs. Round-Robin

While the first examples show the advantages of Intents in principle, the comparisons can
be considered somewhat unfair, since cases where only one interface is used are contrasted
with cases where multiple interfaces are used in parallel. For a more equitable competition,
we now compare the use of Intents to an application unaware policy which makes use of
both interfaces as well.

More specifically, we examine the performance of the previously used filesize policy
next to a policy that uses both interfaces in a round-robin fashion, i.e. alternates between
them for the connections. From Experiment 2 we have obtained the filesize thresholds of
1400 KBytes for i1 and 100 KBytes for i1’. Since all objects of the two web sites are
smaller than 1400 KBytes, using the filesize policy with this threshold would be equal to
an ”i1 only” policy, defeating the purpose of Intents. As only the threshold of 100 KBytes
from the second run of Experiment 2 lies within the object size range of our workload, we
use the lower bandwidth interface i1’ with 2 Mbits.

For being able to use multiple interfaces in parallel, we need parallel requests to the
server. We choose to download both of the web pages at the same time simulating two
users that are using an access point with multiple network interfaces, running two wget
instances simultaneously and measuring the completion times of both.

The New York Times site benefits from the application unaware round-robin policy
with an improvement in performance by 20% and 18% vs. the interface i1’ only and the
interface 12 only case while the other does not perform worse (results not shown). The
web download times for the round-robin and filesize policies are shown in the boxplot of
Figure 10. We point out that downloading the New York Times site benefits significantly
from using the filesize Intent. Its download time is improved by 35% or, put differently,
using round-robin is 1.5 times slower. For the Flickr site the completion time advantages

44

30

25

20
1

10
1

Completion time [s]
15
1

o - —_— —_—
Round Robin Intents Round Robin Intents
New York Times Flickr

Figure 10: Scenario 3: Boxplot of completion times.

are smaller. This is mainly due to the large number of small objects on the New York
Times site, which benefit more from using the low latency interface i1°.

7.3. Conclusion

All of the shown scenarios only employ simple, intuitive policies, which nevertheless visibly
improve the system’s service to the application by decreasing completion times. However,
the policies can have parameters that greatly depend on network characteristics, such as
the threshold of the filesize policy. Thus it is important for policies to be not only be aware
of the application’s needs, but also of their environment. Moreover, the third experiment
highlights that even a simple application unaware policy can improve performance for
multi-access devices, while application aware policies can yield even better performance.

45

8. Conclusion and Future Work

One of the limiting factors for leveraging multiple interfaces to improve service to ap-
plications is good information about the applications’ needs. The trend with internet
capable devices has gone from adding a second network interface to adding the third or
even fourth, and several solutions for choosing which network interface to use for which
communication exist. However, none of them has become standard practice, and many of
them are not aware of the applications’ individual characteristics and requirements. We
propose to resolve this with Socket Intents, a way to express information about the ex-
pected characteristics and requirements of a connection, to aid decisions such as interface
selection.

In this thesis we describe the principle and propose a set of Intents with information
that we think is useful to provide. If necessary to support more use cases, it is simple
to define additional Intents without having to alter the principle. We propose a real-
ization of Socket Intents via a modified socket API, exchangeable policies which can be
environment-specific, and a policy manager called MAM. These components make up a
framework where applications can set Intents for their connections, which can influence
policy decisions such as the selection of source and destination address and the tuning
of network parameters. The results of these decisions are then applied on the socket of
the connection, aiming to improve the system’s service to the application. This approach
allows for a large variety of use cases with different access networks, applications and
policies. The thesis gives practical advice of how applications can be modified to interact
with the framework and how policies are written.

In a first feasibility study to assess the potential benefit of applying Intent aware policies,
three scenarios are emulated within a testbed. Our results show that making application
informed decisions about the interface to use can indeed improve performance for the
application, compared to employing an application unaware policy or no policy at all.
However, this evaluation has limited applicability to real-world scenarios. A multihomed
test machine which runs the Socket Intents prototype exists, but has not become part of
this thesis anymore. It would be possible to conduct a larger study of the use of Intents
in real-world scenarios using genuine access networks, as opposed to emulated ones.

For further expansion of the framework, we see three tiers: More use cases (possibly
involving new topologies), more application scenarios, and more policies.

Within the following two use cases, we think that Intents can be employed with only
minor additional effort: Interface selection for mobile data offloading on smartphones and
access bundling at home. The latter refers to the enhancement of slow access networks
by using cellular mobile communications, which can for example be useful in rural areas.
In the this case, the framework is used on a new topology, as the end device may not be
directly connected to multiple networks, but only to one small network within the home.
Within this network, several routers or other access devices may be present. As multiple
prefixes can be configured on a single interface, one can ask the question of how to handle
multiple received advertisements from multiple access devices: Is it feasible to configure
one prefix for each available access device and distinguish between them on the end host?

Concerning application scenarios, so far our client side is limited to a very simple
client, namely wget. We are planning to add Socket Intent support to more applications,

47

such as more complex HTTP clients. Enabling a browser or its plugins to use Intents
would make it possible to distinguish between different types of media that are sent over
HTTP. For instance, we could handle video streams separately from small queries or
bulk downloads, optimizing policy decisions according to each connection’s needs. As
websites often include multiple requests to the same destination, many clients support
HTTP pipelining, i.e. sending multiple requests over a single connection. As this has
the potential to greatly improve performance, it is desirable to add support for this to
the framework. This may involve modifications to the Socket Intent Library, the MAM,
and the policies. Another possible expansion of the Socket Intent Library is to request
reestablishing a connection in case of major changes of policy decisions, e.g. due to major
changes of network conditions. This could also require support from the application.

In addition to exploring more use cases and application scenarios, in future work we plan
to expand our exploration of possible policies. On the one hand, this means having more
information available to base a decision on. Applications can set more Intents, but we are
also planning to expand the policy framework with advanced network statistics. For this,
interface counters can be read, and statistics could be gathered, e.g. RSSI or carrier data
rate. This allows for policies that are not only application informed, but that possess
cross-layer information. Moreover, we plan to experiment with more possible effects of
policy decisions that can be applied on a socket, especially regarding the combination of
multiple interfaces on a single host. For this, we intend to include newer protocols with
path management capabilities, such as MPTCP and SCTP. Furthermore, we see potential
for optimization of network parameters such as choosing the congestion control algorithm
for TCP.

Furthermore, the Intents framework would benefit from better integration with the
OS. Interaction with the components that manage network interfaces, such as Network
Manager on many Linux distributions, would enable the MAM to automatically react
to changes of the host’s network environment. For instance, the MAM could load a
different policy that is more fit for the new scenario, and it could automatically adjust
the list of prefixes to use. Information for autoconfiguration that is received on one
or multiple interfaces can be incorporated within MAM, which could also try to resolve
conflicts among the autoconfiguration from different provisioning domains. Besides MAM
integration, it is also conceivable to integrate the Socket Intent Library deeper in libc,
where the original Socket API is implemented.

Moving forward we claim that the use of Socket Intents and our framework to as-
sess application aware policies can yield valuable insights regarding the use of multiple
interfaces.

We are confident that one can go some way towards universally taking advantage of
one’s multiple network interfaces and improving service to many different applications by
including the proposed Socket Intent API and the MAM or a similar solution in popular
OSes.

48

A. Socket API Functions

Name Parameters Value Return Type
socket family e.g. AF UNIX (Unix domain socket), File descriptor of the
AF_INET (IPv4), AF_INET6 (IPv6) created socket
type e.g. SOCK_STREAM, SOCK_DGRAM
protocol 0 or protocol number
bind socket File descriptor of the socket 0 if successful
localaddr Local socket address other value if not
addrlen Length of socket address
connect socket File descriptor of the socket 0 if successful
remoteaddr Remote socket address other value if not
addrlen Length of socket address
listen socket File descriptor of the socket 0 if successful
queuesize Maximum number of waiting connec- other value if not
tion requests
accept socket File descriptor of the socket File descriptor of the
remoteaddr Filled with the address of the peer mnew connected socket
socket
addrlen Length of socket address
shutdown socket File descriptor of the socket 0 if successful
how SHUT RD (disable read), SHUT_WR (dis- -1 if error
able write) or SHUT_RDWR (disable both)
getaddrinfo node Host name or IP address to resolve 0 if successful
service Service name to resolve error code otherwise
hints constraints for the lookup
res buffer where the response will be stored

Table 4: Socket API calls for setting up, using and tearing down sockets, and resolver

library call

49

Name Parameters Value Return Type
send socket File descriptor of the socket Number of bytes that
buffer Data to send were sent
length Length of the data to send
flags Additional settings for this message
recv socket File descriptor of the socket Number of bytes that
buffer Buffer where data should be read into were read
length Length of the buffer
flags Additional settings for this message
sendto socket File descriptor of the socket Number of bytes that
buffer Data to send were sent
length Length of the data to send
flags Additional settings for this message
remoteaddr Address of the remote socket
addrlen Length of socket address
recvfrom socket File descriptor of the socket Number of bytes that
buffer Buffer where data should be read into were read
length Length of the buffer
flags Additional settings for this message
remoteaddr Filled with the address of the remote
socket
addrlen Length of socket address
Table 5: Socket API calls for sending and receiving
Name Parameters Value Return Type
setsockopt socket File descriptor of the socket 0 if successful
level Level on which the option applies -1 if error
optname Identifier of the option
optval Buffer where the value is stored
optlen Length of the buffer with the value
getsockopt socket File descriptor of the socket 0 if successful
level Level on which the option applies -1 if error
optname Identifier of the option
optval Buffer where the value is stored
optlen Length of the actual returned value

Table 6: Socket API calls for setting and querying options

50

B. Definitions of Intents

#define SOL_INTENTS 300
#define
#define
#define
#define
#tdefine
#define
#define

INTENT_CATEGORY
INTENT_FILESIZE
INTENT_DURATION
INTENT_BITRATE 4
INTENT_BURSTINESS 5
INTENT_TIMELINESS 6
INTENT_RESILIENCE 7

1
2
3

/ *
/ *
/%
/ *
/ *
/ *
/ *

/* One of five brief categorie
typedef enum intent_category

{

INTENT_QUERY ,
INTENT_BULKTRANSFER ,
INTENT_CONTROLTRAFFIC,
INTENT _KEEPALIVES,
INTENT_STREAM
intent_category_t;

/ *
/ *
/ *
/ *
/ *
}

/** Qualitative description of
typedef enum intent_burstiness
{
INTENT_RANDOMBURSTS ,
INTENT_REGULARBURSTS ,
INTENT_NOBURSTS,
INTENT_BULK
} intent_burstiness_t;
/** Desired characteristics re
typedef enum intent_timeliness

{

INTENT_STREAMING, /*
INTENT_INTERACTIVE, /*
INTENT_TRANSFER, /*

INTENT_BACKGROUNDTRAFFIC /*
intent_timeliness_t;

3

/** Impact on application if connection fails

typedef enum intent_resilience

{

INTENT_SENSITIVE,

INTENT_TOLERANT ,
inconvenient */

INTENT_RESILIENT

intent_resilience_t;

/ *
/ *

/ *

Small,
Large,
Large,
Small,
Large,

Traffic category */

Number of bytes transferred x*/

Time of last first data [seconds]
Size / duration [bytes per second]
Burstiness category */

Timeliness category */

Resilience category */

*/
*/

s into which the traffic may fit x*/

short x*/

short, fast,
long, slow,
long, slow,
long, fast,

bursty */
bursty */
not bursty
not bursty

*/
S

*/

the application traffic’s bursts.

/* Congestion window limited x*/

garding delay and jitter. x*/

Low delay, low jitter x*/
Low delay, possible jitter */
Should complete eventually */

Only loose time constraint */

and is reestablished */

Connection loss
Connection 1loss

makes application fail %/
tolerable, but

Connection loss acceptable */

Listing 14: Definition of Intents. From lib/intents.h

o1

C. Implementation Details of the Framework

C.1. Socket Context

The socket context has a ”"public” part which is used by the application and contains
parameters for managing the context, shown in Listing 15. The actual information about
the socket is stored within the "internal” context, shown in Listing 16, and only this
portion is serialized.

/* Context of a socket on the client side */
typedef struct muacc_context

{
int usage ; /* reference counter */
uint8_t locks; /* lock to avoid multiple concurrent
requests */
int mamsock ; /* socket to talk to MAM x/
struct _muacc_ctx *xctx; /* intermnal struct with relevant socket

context data x*/
} muacc_context_t;

Listing 15: Socket context, as presented to applications, from clib/muacc_client.h

/* Internal muacc context struct
All data will be serialized and sent to MAM */
struct _muacc_ctx {

muacc_ctxid_t ctxid; /* identifier for the context */

unsigned int calls_performed; /* flags of performed calls */

int domain; /* socket domain, e.g. AF_INET x*/

int type; /* socket type, e.g. SOCK_STREAM
*/

int protocol; /* particular protocol */

struct sockaddr *bind_sa_req; /* local address by application
*/

socklen_t bind_sa_req_len; /* length of bind_sa_req*/

struct sockaddr *bind_sa_suggested; /* local address suggested
by MAM */

socklen_t bind_sa_suggested_len; /* length of bind_sa_resx*/

char *remote_hostname; /* hostname to resolve %/

struct addrinfo xremote_addrinfo_hint; /* hints for resolving x*/

struct addrinfo *remote_addrinfo_res; /* candidate remote
addresses (sorted by MAM preference) */

struct sockaddr *remote_sa; /* remote address choosen
in the end x/

socklen_t remote_sa_len; /* length of remote_sa_res
*/

struct socketopt *sockopts_current; /* socket options
currently set */

struct socketopt *sockopts_suggested; /* socket options

suggested by MAM */
};

Listing 16: Socket context: Library internal data, from lib/muacc.h

52

N O s W N

10

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28

C.2. MAM Context

The MAM context shown in Listing 17 stores information about the current state of the
system and is passed to policies.

/* Context of the MAM x/
typedef struct mam_context {

int usage; /* Reference counter */

GSList *prefixes; /* Local prefixes on this
system */

lt_dlhandle policy; /* Handle of policy module */

struct event_base *ev_base; /* Libevent Event Base *x/

struct evdns_base *evdns_default_base; /* Fallback DNS base */

GHashTable *policy_set_dict; /* From config file */

} mam_context_t;

Listing 17: MAM context, from mam/mam.h

C.3. Sample Policy

This policy is intended to be used as a template for implementing new policies. Parts of
it are discussed in Section 6.2 in further detail.

#define init policy_sample_LTX_init

#define cleanup policy_sample_LTX_cleanup

#define on_resolve_request policy_sample_ LTX_on_resolve_request
#define on_connect_request policy_sample_LTX_on_connect_request

/** Dummy to illustrate how policies work
* Policy_info: Whether interface has been specified as default in the
config file

(e.g. set default = 1 in the prefix statement)
* Behavior:
Getaddrinfo - Resolve names using the default dns_base from the MAM
context
Connect - Choose the default interface if available

#include "policy.h"
#include "policy_util.h"

/**% Policy-specific per-prefix data structure that contains additional
information x*/
struct sample_info {
int is_default;

};

/** List of enabled addresses for each address family */
GSList *in4_enabled = NULL;
GSList *in6_enabled NULL ;

/** Helper to set the policy information for each prefix
* Here, check if this prefix has been configured as default

*/

33

29
30
31
32
33
34
35
36
37
38
39

void set_policy_info(gpointer elem, gpointer data)
{

struct src_prefix_list *spl = elem;

struct sample_info *new = malloc(sizeof (struct sample_info));
new->is_default = 0;

if (spl->policy_set_dict != NULL)
{
gpointer value = NULL;
if (((value = g_hash_table_lookup(spl->policy_set_dict, "default"))
I= NULL) && value)
new->is_default = 1;
X
spl->policy_info = new;

}

/** Helper to print additional information given to the policy
*/

void print_policy_info(void *policy_info)
{

struct sample_info *info = policy_info;

if (info->is_default)

printf (" (default)");

X

void freepolicyinfo(gpointer elem, gpointer data)
{

struct src_prefix_list *spl = elem;

if (spl->policy_info != NULL)
free(spl->policy_info);

spl->policy_info = NULL;
+

/** Helper to set the source address to the default interface,
* 1if any exists for the requested address family
*/
void set_sa_if_default(request_context_t *rctx, strbuf_t sb)
{
GSList *spl = NULL;
struct src_prefix_list *cur = NULL;
struct sample_info *info = NULL;

if (rctx->ctx->domain == AF_INET)
spl = in4_enabled;

else if (rctx->ctx->domain == AF_INET6)
spl = in6_enabled;

while (spl != NULL)
{
cur = spl->data;
info = (struct sample_info *)cur->policy_info;

o4

82 if (info !'= NULL && info->is_default)

83 {

84 /* This prefix is configured as default. Set source address */
85 set_bind_sa(rctx, cur, &sb);

86 strbuf _printf (&sb, " (default)");

87 break;

88 }

89 spl = spl->next;

90 }

o1| }

92
93| /** Initializer function (mandatory)

94/ * Is called once the policy is loaded and every time it is reloaded
95| * Typically sets the policy_info and initializes the lists of
candidate addresses

96| */

97| int init (mam_context_t *mctx)

o8| {

99 printf ("Policy module \"sample\" is loading.\n");

100
101 g_slist_foreach(mctx->prefixes, &set_policy_info, NULL);
102
103 make_v4v6_enabled_lists (mctx->prefixes, &in4_enabled, &in6_enabled) ;
104
105 printf ("\nPolicy module \"sample\" has been loaded.\n");
106 return O;

107 }

108
109| /** Cleanup function (mandatory)

1100 * Is called once the policy is torn down, e.g. if MAM is terminates
1111 * Tear down lists of candidate addresses (no deep free) and policy

infos
12| */
113 int cleanup (mam_context_t *mctx)
114 {

115 g_slist_free(in4_enabled);

116 g_slist_free(in6_enabled);

117 g_slist_foreach(mctx->prefixes, &freepolicyinfo, NULL);
118
119 printf ("Policy sample library cleaned up.\n");
120 return O0;

121 }

122
1238| /** Asynchronous callback function for resolve request

124| * Invoked once a response to the resolver query has been received

125/ * Sends back a reply to the client with the received answer

126 */

127 void resolve_request_result(int errcode, struct evutil_addrinfo *addr,
void *ptr)

128] {

129

130 request_context_t *rctx = ptr;
131

132 if (errcode) {

95

133

134

136
137
138
139
140
141
142
143
144
145
146
147
148
149

151
152
153
154

156
157
158
159

160
161
162
163
164
165

166
167

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

printf ("\n\tError resolving: %s -> %s\n", rctx->ctx->
remote_hostname , evutil_gai_strerror(errcode));

}

else

{

printf ("\n\tGot resolver response for %s: %s\n",

rctx->ctx->remote_hostname,
addr->ai_canonname 7?7 addr->ai_canonname : "");

assert (rctx->ctx->remote_addrinfo_res == NULL) ;
rctx->ctx->remote_addrinfo_res = addr;
print_addrinfo_response (rctx->ctx->remote_addrinfo_res);

3

// send reply
_muacc_send_ctx_event (rctx, muacc_act_getaddrinfo_resolve_resp);

// hack - free addr first the evutil way
if (addr '= NULL) evutil_freeaddrinfo (addr) ;
rctx->ctx->remote_addrinfo_res = NULL;
// then let mam clean up the remainings
mam_release_request_context (rctx);

/** Resolve request function (mandatory)

* Is called upon each getaddrinfo request from a client

* Must send a reply back using _muacc_sent_ctx_event or register a
callback that does so

*/

int on_resolve_request(request_context_t *rctx, struct event_base *base)
struct evdns_getaddrinfo_request *req;

printf ("\tResolve request: %s", (rctx->ctx->remote_hostname == NULL ?
UL rctx->ctx->remote_hostname)) ;

/* Try to resolve this request using asynchronous lookup */
req = evdns_getaddrinfo(
rctx->mctx->evdns_default_base,
rctx->ctx->remote_hostname,
NULL /* no service name given */,
rctx->ctx->remote_addrinfo_hint,
&resolve_request_result,

rctx) ;
printf (" - Sending request to default nameserver\n");
if (req == NULL) {

/* returned immediately - Send reply to the client x/
_muacc_send_ctx_event (rctx, muacc_act_getaddrinfo_resolve_resp);
mam_release_request_context (rctx);
printf ("\tRequest failed.\n");

}

return O;

56

184
185
186
187

188
189
190
191
192
193
194

196
197
198
199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

/

**x Connect request function (mandatory)

* Is called upon each connect request from a client

* Must send a reply back using _muacc_sent_ctx_event or register a
callback that does so

*/

int on_connect_request(request_context_t *rctx, struct event_base x*base)

{

strbuf_t sb;

strbuf_init (&sb) ;

strbuf_printf (&sb, "\tConnect request: dest=");

_muacc_print_sockaddr (&sb, rctx->ctx->remote_sa, rctx->ctx->
remote_sa_len);

if (rctx->ctx->bind_sa_req != NULL)
{ // already bound
strbuf _printf (&sb, "\tAlready bound to src=");
_muacc_print_sockaddr(&sb, rctx->ctx->bind_sa_req, rctx->ctx->
bind_sa_req_len) ;

}
else
{
// search address to bind to
set_sa_if_default(rctx, sb);
}

// send response back
_muacc_send_ctx_event (rctx, muacc_act_connect_resp);
mam_release_request_context (rctx);
printf ("%s\n\n", strbuf_export (&sb));
strbuf_release (&sb);

return O;

Listing 18: Sample policy module, from policies/policy_sample.c

o7

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[eee std. 1003.1-2001 standard for information technology — portable operating system
interface (posix). Open Group Technical Standard: Base Specifications, Issue 6, 2001.

H. Abbasi, C. Poellabauer, K. Schwan, G. Losik, and Richard. A quality-of-service
enhanced socket api in gnu/linux. In In the 4th Real-Time Linuxz Workshop, 2002.

Aruna Balasubramanian, Ratul Mahajan, and Arun Venkataramani. Augmenting
mobile 3g using wifi. In ACM MobiSys, 2010.

M. Blanchet and P. Seite. Multiple Interfaces and Provisioning Domains Problem
Statement. RFC 6418 (Informational), Nov 2011.

Bundesministerium fiir Wirtschaft und Technologie. Breitbandatlas. Website http:
//www.zukunft-breitband.de/DE/breitbandatlas accessed on 2013-06-12, 2013.

Cisco Systems, Inc. Architecture for mobile data offload over wi-fi access
networks (whitepaper). http://www.cisco.com/en/US/solutions/collateral/
ns341/ns524/ns673/white_paper_c11-701018.html, 2012.

A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural Guidelines
for Multipath TCP Development. RFC 6182 (Informational), Mar 2011.

R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens. Basic Socket
Interface Extensions for IPv6. RFC 3493 (Informational), Feb 2003.

B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Giuli, B. Noble, and D. Watson.
Intentional networking: opportunistic exploitation of mobile network diversity. In

Proceedings of the sixteenth annual international conference on Mobile computing
and networking, MobiCom 10, pages 73-84. ACM, 2010.

Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen, and
Oliver Spatscheck. A close examination of performance and power characteristics of
4g lte networks. In ACM MobiSys, 2012.

K. Lan and J. Heidemann. A measurement study of correlations of internet flow
characteristics. Computer Networks, 50(1):46-62, 2006.

Kyunghan Lee, Joohyun Lee, Yung Yi, Injong Rhee, and Song Chong. Mobile data
offloading: how much can wifi deliver? In ACM CONEXT, 2010.

GNU Libtool. Libtool dynamic linking (ltdl). http://www.gnu.org/software/
libtool/manual/libtool.html, 2013.

T. Narten, R. Draves, and S. Krishnan. Privacy Extensions for Stateless Address
Autoconfiguration in IPv6. RFC 4941 (Draft Standard), Sep 2007.

29

http://www.zukunft-breitband.de/DE/breitbandatlas
http://www.zukunft-breitband.de/DE/breitbandatlas
http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns673/white_paper_c11-701018.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns524/ns673/white_paper_c11-701018.html
http://www.gnu.org/software/libtool/manual/libtool.html
http://www.gnu.org/software/libtool/manual/libtool.html

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474 (Proposed Standard),
Dec 1998. Updated by RFCs 3168, 3260.

E. Nordmark, S. Chakrabarti, and J. Laganier. IPv6 Socket API for Source Address
Selection. RFC 5014 (Informational), Sep 2007.

M. Scharf and A. Ford. Multipath TCP (MPTCP) Application Interface Considera-
tions. RFC 6897 (Informational), Mar 2013.

A. A. Siddiqui and P. Miiller. A requirement-based socket api for a transition to
future internet architectures. In IMIS, pages 340-345, 2012.

W. Stevens, M. Thomas, E. Nordmark, and T. Jinmei. Advanced Sockets Application
Program Interface (API) for IPv6. RFC 3542 (Informational), May 2003.

W. Richard Stevens and Gary R. Wright. TCP/IP illustrated (vol. 2): the imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., 1995.

R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed Standard),
Sep 2007. Updated by RFCs 6096, 6335.

R. Stewart, M. Tuexen, K. Poon, P. Lei, and V. Yasevich. Sockets API Extensions
for the Stream Control Transmission Protocol (SCTP). RFC 6458 (Informational),
Dec 2011.

D. Thaler, R. Draves, A. Matsumoto, and T. Chown. Default Address Selection for
Internet Protocol Version 6 (IPv6). RFC 6724 (Proposed Standard), Sep 2012.

M. Wasserman and P. Seite. Current Practices for Multiple-Interface Hosts. RFC
6419 (Informational), Nov 2011.

M. Welzl, S. Jorer, and S. Gjessing. Towards a protocol-independent internet trans-
port api. In Communications Workshops (ICC), 2011 IEEE International Conference
on, pages 1 —6, june 2011.

J. Wroclawski. The Use of RSVP with IETF Integrated Services. RFC 2210 (Pro-
posed Standard), Sep 1997.

60

	Glossary
	Introduction
	Background
	Definition of a Socket
	The Socket API
	Connection and Operation
	Name Resolution
	Socket Options

	Networking Implementation in Unix-Based OSes
	Possible Points of Modification

	Related Work
	Interface Selection and Management
	Expressing Application Preferences
	Quality of Service
	Using Multiple Interfaces in Parallel
	Mobile Data Offloading

	Intents
	Approach to Intents
	Intents of our Prototype
	Implementation

	Design and Implementation
	Components
	Socket Intent Library
	Interception of Function Calls
	Policy Decisions

	Multi Access Manager
	Initialization
	Request Handling

	Policies
	Structure and Operation
	Types of Decisions
	Examples

	Adding Applications and Policies
	Modifying an Application to Support Intents
	Substituting the Socket Calls
	Setting Intents
	Building the Application

	Writing a Policy
	Writing a Configuration File
	Setting Up and Shutting Down the Module
	Destination Address Selection
	Source Address Selection
	Building the Policy

	Evaluation
	Setup
	HTTP Client and Server
	Workloads
	Network Emulation

	Experiments
	Bulk Transfer vs. Query
	Offload by Filesize
	Filesize Intent vs. Round-Robin

	Conclusion

	Conclusion and Future Work
	Socket API Functions
	Definitions of Intents
	Implementation Details of the Framework
	Socket Context
	MAM Context
	Sample Policy

	References

